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Abstract

The cotangent bundle M =T X of a smooth manifold X has a natural symplectic struc-
ture w=X}_ dz; /\ d&;,in this paper, we aim to investigate two things of the cotangent bundle,
the first is about the symplectomorphisms between them, as the main result we proved that a
symplectomorphisms g: T°X,—T X, isa lifting of a diffeomorphism f:X; — X, ifand
only if it preserves the Liouville 1-form, the second thing is about the Lagrangian submanifold
of the cotangent bundle, we gave some examples, the images of the sections and the conormal
bundles, as an application, we showed that a diffeomorphism between two manifolds
¢:M, — M, isa symplectomorphisms if and only if the graph F¢ is a Lagrangian submani-
fold of the product manifold M; X M,.
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1.Introduction

Let X bean 7 -dimensional manifold, M = T°X isthe cotangent bundle, choose a coordinate chart
(U,21,...,x,) of €U, then diy,...,dz, is a basis of the cotangent space T, X , if £€€T, X, then
E=X71&dx; for some real coefficients & ER | that induces a map T'U—R*™ via
(2,6) — (4, ...,7,,&1,...,&,) , thus the cotangent bundle M isa 2n — dimensional manifold, we define a
2-form w associated with the local coordinate (T*U, TiyeeeyTnyEpyeny én) by w= Yrodx; NdE;itisa
canonical symplectic form' on M  which makes the cotangent bundle be a symplectic manifold | 1], define the
1-form a=2X7_,£,dz; whichis the Liouville 1-form, clearly w=—da,let m:T X — X be the natu-
ral projection via 7w p = (2,6) — x , then one can define the Liouville 1-form pointwisely by
o, = (dm) ;5 =£0o (dm) » E T;M 11121, where (dm) ; stands for the transpose of the tangent map.

Let X1,X5 be 2 diffeomorphic 7 — dimensional manifolds with cotangent bundle My, M, respectively,
0,0 are the Liouville 1-forms on their cotangent bundles respectively , fl Xi— X5 is a
diffeomorphism, then there is a natural diffeomorphism fsr My — My which lifts f | namely, if
(xla 51) € M, then fy (-’1717 61) = (11527 52) , where f(l'l) =z, & = (df) :1 &, ,and the following diagram

commutes

T X, f+ T X,
m T2
X, f X,

' If without of an extra explanation, we shall use the notion w  to represent for the canonical symplectic form on a manifold, and @ the Liouville

1-form on the cotangent bundle.
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Moreover, if g: X, — X3 is another diffeomrphism, then one has (gof )# = g4 O f4, which implies
that the 7™ is a covariant functor from the category of manifolds to the category of symplectic manifolds.

About the lifting fz we know the following result from [1-3]:
Lemma 1.1 The lifting fy isa symplectomorphism which presrves the Liouville 1-form, i.e. f; Qs =y,
where fo: Q' (T*X,) — Q' (T*X,) is the pull-back [4] of fy.

So now, there is a natural question, do all symplectomorphisms come from the lifting of some diffeomrhisms ?
And since the cotangent bundle is now a symplectic manifold, what does its Lagrangian submanifolds look like ?

Now we shall answer these questions.

2.The Symplectomorphisms Between Cotangent Bundles

The answer of the first question is negative, for the lemma 1.1 tells us that if the symplectomorphisms between
the cotangent bundles is a lifting of some diffecomorphisms, it should at least preserve the Liouville 1-form,
however, there do exists some symplectomorphisms which fail to hold for this property.
Example Let g€ C™(X), and p:T*X — T*X by p(2,&) = (2,£ +dg,), here dg, represents
for the total differential of g at Z € X, then by calculation one can find that p*a=a+7*dg and p is
a symplectomorphisms.

So, what is the criterion for symplectomorphisms arise as lifts of diffeomorphisms? We have the following
result:
Theorem 2.1 Let ¢:T*X, — T*X, bea symplectomorphism between two cotangent bundles, g arises
as a lift of diffeomorphism f:X; — X, ifandonlyif g preserves the Liouville 1-forms,i.c. g¥ap=ay.

The “only if” part is the statement of lemma 1.1, so it suffices to prove the “if” part. To be convenient, we shall
just study the case X;=Xo,=2X , If we denoted by ¢(z1,&) = (22,&2) , it is natural to write
f(z1) =2 to gain the commutative diagram, but we do not know whether this is a diffeomorphism yet, here
we need some lemmas.
Lemma 2.2 There exists a unique vector field ¥ on T™X such that the interior product ¢,w = —q.
Proof: By comparing the coefficients, one can find the unique vector field is v = %71 ;0 , which is expressed
in the local chart (T"'U, 21, ..., Zn,&1,.0,E,). A

Now we consider the phase curve 7 (¢) = exptv(p):R — T*X induced by the vector field v, that is
the parametrized curve with the initial condition ¥(0) =p and satisfies the differential equation
vO 7y =72, wedenotedby exptv: T*X — T*X the phase flow induced by ¥, which is a one-parameter
group on T*X bysending p to exptv(p).
Lemma 2.3 If g is a symplectomorphism preserves the Liouville 1-form &, then g commutes with the
phase flow induced by v,i.e. g Oexptv =exptvOg.
Proof: Recall that the push-forward map ge:T,(T*X ) — T, (T*X) of g actson v is defined as
(9+v,) gy = (dg) , v, , then the phase curve induced by g+«v at point g(p) is

9(p) —
(gov) (t) =g oexptv(g(p))
Thus the phase curve passed through the point p should be g O exptv (g7*(p)), thus the phase flow
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induced by g+v is exactly g O exptv O g ", then notice that
g*a (vp) = a((dg) pvp) = g* (_va(vp))
=~ va(<dg) pvp) = g* (wp (vpa vp))
= w((dg> pvpavp) =0
Which implies that g«v =, thus g O exptv =exptvOg. W
Lemma 2.4 exptv(z,§) = (z,e'§).
Proof: Choose a local coordinate (T°U Ty ey Ty &1, -, &) , and assume that phase curve can be expressed as

v(t) =expto(p) = (@), fu (8), 91 (8)5 e, 9. (1))
Then the restrictionof v on v is (v 0 7y)(¢) =X7_19;(t) ¢ , by definition we have the differential equa-
tions f;(t) =0,g/(t) = g;(¢), and the initial condition f;(0) = z;,9;(0) = &;, thus we can get the so-
lution f;(t) =z;, g;(t) =€’ .1
Lemma 2.5 If we denoted by g(21,&1) = (22,&2), then g(21, X&) = (22,As) forall AeR.
Proof: Applying lemma 2.3 and 2.4, one has

g(x1, X&) = (g 0 exp log ) (21, &)
= ((exp log W) 0 g) (21,&1)
= (exp log \v) (22,£2) = (22, AE) L

Now we can prove our main result.

The proof of theorem 2.1: We denoted by g(z1,&1) = (g1(21,£1),92(21,&1)), where g, are both smooth,
applying lemma 2.5 we have g1 (21, A1) = g1 (21,€1) and g2 (21, A&) = Ag2(@1,&1), by letting A=0,
we gain that g1 (21,&1) = g1(21,0) and g2(21,0) =0, which means that g; onlyacts onthe X part,
go only acts on the fiber parts, thus we have f(21) = &> = g1 (2, 0), which is obviously smooth. The bijec-

tion comes from the commutative diagram:

-1 -1
rx—9 .pmx 9 .pex I ey
WI wl w\ 71'\
_ ; 4
X X X X

And the smmothness of the inverse map is obviously.

Finally, we need to show that the g is exactly the lifting of [, it suffices to show that & = (df) ;&2 , in
convenient we denoted by g(p) =g insetead of the former notion, to see this, we differentiate both side of
the identity fOm™ =m0 g andgain (dm), 0 (dg),= (df), 0 (dm),,since g preserves the Liouville

1-form, we have (dg) ;aq = @, , and by the definition we have:

(dg), (d) ;& = (dm) ,& = ((dm), © (dg) ,)*& = (dm) &

./ apn . (1.1)
= (dm) , (df) :&o = (dm) ,&
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Consider a smooth section of the cotangent bundle §:X — T*X | thus we have 7 O s = id x, again, differ-
entiate of both side, we have (ds) (dm), =idz x, by applying (ds). on both side of (1.1), we then got
the desired conclusion.

We can conclude a corollary through the proof.
Corollary 2.6 If g is a symplectomorphism which preserves the Liouville 1-form, then the matrix of the

tangent map (dg) » expressed in the local coordinate of p = (21, fl) is a blocked diagonalized matrix, i.e.

(dg) , = (A B)

Thus the lifting of the diffeomorphism is unique.

3.Lagrangian Submanifolds of the Cotangent Bundles

In this part, we will study the Lagrangian submanifolds of the cotangent bundles, without of an extra explana-
tion, all submanifolds are referring to the closed embedded submanifolds.

Recall that a submanifold Y of a 27 -dimensional symplectic manifold (M,w) is Lagrangian, if for each
p€Y , T,Y is a Lagrangian subspace of T, M ,i.e. W,|r,y =0 and dim7,Y =1/2dimT, M , which
is equivalent to say if %:Y <= M is the inclusion map, i*w=0 and dim7,Y =n, thus the Lagrangian is
an 7 -dimensional submanifold.

We first introduce the image of some section X, =Ims= {(z,&,) € T*X:(z,£,) = s(z) }, where
§:X — T*X s the section of the cotangent bundle, which is a 1-form in ©'(X), X, isan 7 -dimen-
sional submanifold of T™X where the intersection with T*U is given by & =:=¢,=¢,, let
i: X, = T*X be the inclusion map, then 7 0 4: X, — X is a diffeomorphism, moreover, the pull-back

of ¢ isa chain map [4], i.e. we have the following diagram commutes:

Q' (T*X) — & Q?(T*X)
o'(x) —L0r(x)

Theorem 3.1 X, is Lagrangian if and only if $ isa closed 1-form in Q(X).
Proof: 8 will induce a pull-back, namely, s*¥:Q*¥(T*X) — Q*(X), and particularly, since §:X — X
is a diffeomorphic, this induces the isomorphism between s*.OF (X.;) — Q*(X) , and we have the follow-

ing diagram commutes:

Q'(X)

0*(X)
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Next we claim that s*a = s, in fact, we denoted by p= (z,€,), then by definition:

(s*ar), = (ds) . (dm) &, = (d(m 05)) &,
=&, =s(2)

Hence s*or = o, then by the diagram chasing, the X, is Lagrangian, if and only if di*a: =0, if and only if
ds*a =0 (due to the isomorphism), if and only if ds = 0, that is a closed form. W

Whenever X s simply connected, we know from topology that the 1** de Rham cohomology group is 0,
thus all such Lagrangian submanifolds have the form Xy, such a primitive function f is called the generating
function, two functions generate the same Lagrangian if they differ by a constant.
Corollary 3.21f X isa compact manifold, then the cardinality | X Xo|=2, where X, stands for the
zero section.
Proof: The elements in the set X4 X is exactly the critical points of f, and since X is compact, it is
clearly that f has at least two critical points. W

However, the Lagrangian submanifolds are not all the image of closed 1-form, as an example, we shall intro-
duce the conormal bundle.

The conormal spaceat ¥ €Y is the set N;Y = {¢e T;X:f(v) =0,Vve TyY} , that is the collec-

tion of those cotangent vectors which have no T; Y components, the conormal bundle of Y is

Ny =][NY

yey
This isan 7 -dimensional submanifold of 77X | because when we choose the adapted coordinate chart U to
Y on X, N*(Y NU) is the coordinate chart on the conormal bundle, by some simply observations:
Proposition 3.3"' The inclusion 4:N*Y < T*X pulls the Liouville 1-form back to 0,i.e., i*ae =0, hence
N*Y is Lagrangian.

For example, if we take Y = {z}, then the conormal bundle is a line bundle, that is the cotangent fiber

T, X ,if we take Y = X | then the conormal bundle is the zero section X .

4.Some Applications to Symplectomorphisms

The Lagrangian submanifolds can be used to study the symplectomorphisms, let (My,wr),(Ms,w;) be
two 27 -dimensional diffeomorphically symplectic manifold, ¢:M; — My is the diffeomorphism, there is
a analytical way to check if it is a symplectomorphism, that is by computing the matrix of the differential map.
Proposition 4.1 The diffeomorphism ¢ is the symplectomorphism, if (and only if) the matrix of (d¢ ),

under the canonical coordinate satisfies

<d¢)£(_ , I)(dqb)pl: (_ , I)

The proof'is by directly computing, next we shall introduce a geometric interpretation of checking the symplec-

tomorphisms.
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For (pl,pQ) € M, X M, , define two natural projections i My X My — M, , by sending (pl,p2>

to p;,where 1=1,2 then w= 7T1* wy + ﬂ'; wo is closed 2 -form on the product manifold, because

dw = dm; w; + dms ws

=1 dw; + Tadws, =0
And it is also symplectic, since
2n\ . .
w2 = ( . )(m w)" N (mawy)" #0

Hence symplectic, moreover, if A, # 0, the linear combination A7y wy + s ws s also symplectic, so it
allows us to define the twisted product form W= 1* wy— T ; Wa .

Recall that the graph of ¢ isdefinedas Ty = {(p,$(p)):p € M}, which is a submanifold of the prod-
uct manifold, we note that y(p) = (p,d(p)): M, — T, is the diffecomorphism, thus Ty is an 7 -di-
mensional submanifold.
Theorem 4.2 The diffecomorphism @ is a symplectomorphism, if and only if the graph T’y is the Lagrangian
of the twisted product manifold (M7 X M>,@) .
Proof: The graph I' is Lagrangian, if and only if v*@w =0, since

Y = '7*771* w1 — ’)’*77; Wa
= (moy)*w — (Mo *w, = Y0=0&¢*w,=w

. %
=idy,wi — ¢*w2 n
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