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3 Symplectic And Hamiltonian Group Actions

3.1 Hamiltonian group actions

Fundamental vector field and infinitesimal action.

Definition 1. Suppose a Lie group G acts smoothly on M. For simplicity we always assume that G is
connected.

Φ : G×M −→M

(g, x) 7−→ Φ(g, x) = Φg(x)

Associated to each vector X ∈ g = Lie(G), the map ΦX : R×M →M , defined by

ΦX(t, x) = Φ(exp(tX), x),

is an R-action on M. In other words, Φexp(tX) : M → M is a flow on M. The vector field XM on M,
given by

XM :=
d

dt

∣∣∣∣
t=0

Φexp(tX)(x),

is called the infinitesimal generator of the action corresponding to X.

Remark 1. So there is a map
β : g→ Vect(M), X 7→ XM .

It is called the infinitesimal action of g, and this a Lie algebra anti-homomorphism, i.e.

[X,Y ]M = −[XM , YM ].

Proof. First, we will show a lemma

Lemma 1. (AdgX)M = (Φg)∗XM

This property can be used in the proof of the symplectic forms on the coadjoint orbit (see Exercise II.29
in [Aud04]).

One can define γ(X) := −β(X), then γ : g→ Vect(M), X 7→ X := −XM is a Lie algebra homomor-
phism, where X is called the fundamental vector field in [Aud04].

3.1.1 Symplectic actions.

Now supposeM is symplectic with symplectic form ω. The G-action is called symplectic if any element
g of G defines a diffeomorphism which preserves ω (symplectomorphism):

Φ∗
gω = ω.

Let us write the infinitesimal version of this equality, and then we can know that the fundamental vector
field is symplectic (locally Hamiltonian).
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Proposition 1. All the fundamental vector fields of a symplectic action are symplectic vector fields.

Proof. Let X ∈ g and let XM be the associated infinitesimal generator. Let ϕt be the flow of XM ,

ϕt(x) = exp(tX) · x = Φexp(tX)(x).

Since for any element of G satisfies that Φ∗
gω = ω, that is for any X ∈ g, Φ∗

exp(tX)ω = ω.

LXM
ω =

d

dt

∣∣∣∣
t=0

Φ∗
exp(tX)ω = 0.

We use now both Cartan formula and the fact that ω is closed, to get:

diXM
ω = 0.

Now, one can describe the Symplectic G-action by the fundamental vector field according to this propo-
sition.

3.1.2 Hamiltonian actions.

Definition 2. Similarly, the Symplectic G-action is called

• weakly Hamiltonian G-action if every fundamental vector field X is Hamiltonian, with Hamil-
tonian functions µ̃X ,that is X = Xµ̃X ,

iXω = −dµ̃X .

where µ̃ : g→ C∞(M), X 7→ µ̃X .

• Hamiltonian G-action if it is weakly Hamiltonian, and the map µ̃ is a Lie algebra homomorphism.
One says that the morphism µ̃ of Lie algebra µ̃ : (g, [·, ·]) → (C∞(M), {·, ·}) makes the following
diagram commute.

C∞(M)
µ̃←−−−− g

ν

y yγ

0 −−−−→ Ham(M)
i−−−−→ Symp(M) −−−−→ H1(M ;R) −−−−→ 0

where the i denotes the inclusion, γ := −β, thus γ is a Lie algebra morphism, where β is the
infinitesimal action of Lie algebra g on M.1

Remark 2. What happens when we do not require that µ̃ is a Lie algebra morphism ?

Suppose that X 7→ µ̃X is only a map from g to C∞(M).Then if we compute

ν ◦ µ̃([X,Y ]) = γ([X,Y ]) = [γ(X), γ(Y )] = [ν ◦ µ̃(X), ν ◦ µ̃(Y )]

ν(µ̃[X,Y ]) = ν({µ̃(X), µ̃(Y )}) = ν({µ̃X , µ̃Y })

we note that the problem may be solved up to a constant. Define c(X,Y ) ∈ R by

c(X,Y ) = {µ̃X , µ̃Y } − µ̃[X,Y ].

Consequently, µ̃ is a Lie algebra homomorphism implies that the constant is vanished.

1Since the action is Symplectic G-action, the fundamental vector field is indeed a Symplectic vector field.
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3.1.3 The momentum map.

Definition 3. Associated with µ̃ is the momentum map:

µ : M −→ g∗ = Hom(g,R)
x 7−→ (X 7→ µ̃X(x)).

where µ̃X(x) =< µ(x), X > . Then the fundamental vector field X is the Hamiltonian vector field of
the function µ̃X .

Remark 3. The condition that µ̃X is Hamiltonian for the fundamental vector field X translates into
a condition on the tangent map.

Txµ : TxM −→ g∗ x ∈M,Z ∈ TxM

Z 7−→ Txµ(Z)

namely, ∀X ∈ g,
dµ̃X(Z) =< Txµ(Z), X >= −iXω.

How to describe Hamiltonian action via the momentum map µ instead of µ̃ ?

Definition 4. The momentum is G-equivariant or Ad∗-equivariant if the follow diagram commute.

M
µ−−−−→ g∗

Φg

y yAd∗g

M
µ−−−−→ g∗

where g ∈ G,
µ ◦ Φg = Ad∗g ◦ µ.

Proposition 2. The momentum map µ is G-equivariant if and only if the map µ̃ : (g, [·, ·]) →
(C∞(M), {·, ·}) is a Lie algebra homomorphism.2

Proof. There is a proof on Page 203 of the book [MS17].

Proposition 3. Let f : M → N be an G-equivariant smooth map. Then for any X ∈ g we have:

Tf ◦XM = XN ◦ f.

In other words, the following diagram commutes:

M
f−−−−→ N

XM

y yXN

TM
Tf−−−−→ TN

2We assumed that G is connected.
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Proof. By equivariance we have:
f ◦ Φexp(tX) = Ψexp(tX) ◦ f.

Differetiating with respect to t at t = 0 and using the chain rule gives:

Tf ◦ ( d
dt

∣∣∣∣
t=0

Φexp(tX)) = (
d

dt

∣∣∣∣
t=0

Ψexp(tX)) ◦ f

that is
Tf ◦XM = XN ◦ f.

Proposition 4. The momentum map µ : M → g∗ is an Poisson map, which in this case means that

{f ◦ µ, g ◦ µ}M (x) = {f, g}g∗(µ(x))

where x ∈M , f, g : g∗ → R are two maps.

Proof. By density of polynomials in C∞ functions, it is enough to prove this for two polynomials f
and g. Using the Leibniz rule, we can even assume that f and g are linear functions on g∗ , that is
f = X ∈ g, g = Y ∈ g.

For such an f, the Hamiltonian vector field of the composed map f ◦ µ is defined by

ωx(Z,Xf◦µ) = (df)µ(x)Txµ(Z)

=< Txµ(Z), X >= dµ̃X(x)(Z)

= ωx(Z,X),

so that Xf◦µ = X and Xg◦µ = Y , we have now

{f ◦ µ, g ◦ µ}(x) = ωx(Xx, Y x)

=< Txµ(Xx), Y >

=< Xµ(x), Y > (G-equivariant),

as above. On the other hand,

{f, g}(µ(x)) =< µ(x), [X,Y ] >= − < Xg∗ , Y >=< Xµ(x), Y > .

3.2 Existence and Uniqueness of Moment Map

Uniqueness of Moment Map

Let G be a compact Lie group.

Theorem 1. If H1(g;R) = 0, then moment maps for any Hamiltonian G-action is unique.
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Proof. We suppose that µ̃1 and µ̃2 are two comoment maps for a Hamiltonian action. By definition
for each X ∈ g, µ̃1

X and µ̃2
X are both hamiltonian functions for X, thus µ̃1

X − µ̃2
X = c(X) is a locally

constant, and thus a constant on M (we will always assume that M is connected). So we get an element
c ∈ g∗ by

< c,X >= c(X) = cX

Since µ̃1, µ̃2 are Lie algebra homomorphism, we have

c[X,Y ] = µ̃1
[X,Y ] − µ̃2

[X,Y ] = {µ̃
1
X , µ̃1

Y } − {µ̃2
X , µ̃2

Y }

= {µ̃2
X + cX , µ̃2

Y + cY } − {µ̃2
X , µ̃2

Y }
= 0

Note that in this case the two moment maps are related by

µ1 − µ2 = c,

in other words, they differed by a constant in g∗. Thus for ∀X,Y ∈ g, c[X,Y ] = 0, i.e. c ∈ [g, g]0 =
H1(g;R) = 0. So we get µ1 = µ2.

Remark 4. In other words, moment map are unique up to elements of dual of the Lie algebra which
annihilate the commutator ideal.

The two extreme cases are:

• G is semi-simple: any symplectic action is hamiltonian, moment maps are unique.

• G is commutative: symplectic action may not be hamiltonian, moment maps are unique up to
any constant c ∈ g.

Existense of Moment Maps

We want to know when is that a Symplectic action is Hamiltonnian action? There are two answers,
from the aspect of the smooth manifold M and Lie group G respectively.

Theorem 2. Suppose (M,ω) is a connected compact symplectic manifold with H1(M ;R) = 0, then
any symplectic action is hamiltonian.

Proof. Since H1(M ;R) = 0, any symplectic vector field is hamiltonian vector field. So we can choose a
basis {X1, · · · , Xk} of g, for each Xi , we can find a function µ̃Xi on M with

iXiω = −dµ̃Xi .

For any X ∈ g, one can write

X =

k∑
i=1

= λiXi

and we define

µ̃X =
k∑

i=1

= λiµ̃Xi .
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This define a linear map µ̃ : g→ C∞(M) with

iXω = −dµ̃X (i and d are both linear)

In other words, the G-action is a weakly hamiltonian action, we should prove that µ̃ is a Lie algebra
morphism.

We consider the function,

c[X,Y ] = µ̃[X,Y ] − {µ̃X , µ̃Y }
dc[X,Y ] = dµ̃[X,Y ] − d{µ̃X , µ̃Y }

= −i[X,Y ]ω + i[X,Y ]ω

= 0

thus the function c[X,Y ] is actually a constant, we can reduce it to 0 by some hypothesis.

Theorem 3. Let G be a connected Lie group with

H1(g;R) = H2(g;R) = 0,

then any symplectic G-action is Hamiltonian.

Proof. First note that H1(g;R) = 0 ⇔ [g, g] = g.So any fundamental vector field X can be written as
a summation of vector field of the form [Y ,Z], which is hamiltonian since the Lie bracket of any two
symplectic vector fields is Hamiltonian.

We take an arbitary vector space lift τ : g → C∞(M) for each basis vector X ∈ g, we choose τ(X) =
τX ∈ C∞(M) such that

XτX = X.

The map X 7→ τX may not be a Lie algebra morphism. By construction, τ[X,Y ] is hamiltonian function
for [X,Y ], and {τX , τY } is a hamiltonian function for [X,Y ]. Since [X,Y ] = [X,Y ],

τ[X.Y ] − {τX , τY } = c(X,Y ) ∈ R.

By the jacobi identity, δc = 0.Since H2(g;R) = 0, there is a b ∈ g∗ satisfying c = δb, we define

µ̃ : g→ C∞(M)

X 7→ µ̃X := τX + b(X)

Now, we obtained that

µ̃[X,Y ] = τ[X,Y ] + b([X,Y ]) = {τX , τY } = {µX , µY }

So µ̃ is a Lie algebra homomorphism.

Corollary 1. If G is semi-simple, then any symplectic action is hamiltionian.
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3.3 Classical Examples

Example 1. If H : M → R is any function and if the Hamiltonian vector field XH is complete, its flow
defines a Hamiltonian R−action, the momentum map of which is H.

Example 2. The circle S1 acts on Cn by u · (z1, · · · , zn) = (uz1, · · · , uzn), that is

Φ : S1 × Cn → Cn

(eiθ, (z1, · · · , zn)) 7→ (eiθ · z1, · · · , eiθ · zn)

The fundamental vector field associated with ∂
∂θ ∈ T1S

1 is

X(z) =
d

dt

∣∣∣∣
t=0

(eit · z1, · · · , eit · zn)

= (i · z1, · · · , i · zn)

Since the standard symplectic form ω = dx ∧ dy on Cn, we can get

X =

n∑
j=1

(−yj
∂

∂xj
+ xj

∂

∂yj
).

So we compute µ̃ ∂
∂θ
,

iXω = −dµ̃ ∂
∂θ

n∑
i=1

dxi ∧ dyi(
n∑

j=1

(−yj
∂

∂xj
+ xj

∂

∂yj
), Y ) =

n∑
j=1

(−yjdyj − xjdxj)(Y )

=⇒ dµ̃ ∂
∂θ

=

n∑
j=1

(xjdxj + yjdyj).

The moment map for this action is the hamiltonian

µ =
1

2

n∑
j=1

|zj |2.

Example 3. (Linear momentum). Consider a translation in R3, the phase space is T ∗R3 ∼= R6 =
(q1, q2, q3, p1, p2, p3) with the symplectic form ω =

∑3
i=1 dqi ∧ dpi. Then the action is

Φ : R3 × R6 −→ R6

(⃗a, (q⃗, p⃗)) 7→ (q⃗ − a⃗, p⃗), where a⃗ = (a1, a2, a3) ∈ R3.

So the fundamental vector field associated X = a⃗ is,

X =
d

dt

∣∣∣∣
t=0

(q⃗ − exp(t⃗a), p⃗) =

3∑
i=1

(−ai
∂

∂qi
).

Now we compute the function µ̃X for it, that is −dµ̃a⃗ = iXω.
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iXω(Y ) =
3∑

i=1

dqi ∧ dpi(X,Y )

= −a⃗ · dq⃗(Y )

= −d(⃗a · q⃗)(Y )

So µ̃a⃗(q⃗, p⃗) = a⃗ · q⃗, then we get the moment map from

µ̃a⃗(q⃗, p⃗) =< µ(q⃗, p⃗), a⃗) >= a⃗ · p⃗

=⇒ µ(q⃗, p⃗) = p⃗, which is exactly the linear momentum.

Example 4. (Angular momentunm) Let G = SO(3) act on R3 by

Φ(A, q⃗) = A · q⃗.

we consider the cotangent lift of this action which is symplectic action on cotangent bundle R6. The
infinitesimal version of this action is

Φ̂ : so(3)× R6 → R6

(X, (q⃗, p⃗)) = (X · q⃗, X · p⃗)

Since the map f : (a1, a2, a3) 7→

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 gives an isomorphism from so(3) to R3, we can

compute the map

φ : R3 × R6 → R6

(⃗a, (q⃗, p⃗)) 7→ (⃗a× q⃗, a⃗× p⃗)

where a⃗ = (a1, a2, a3) ∈ R3.

a⃗ =
d

dt

∣∣∣∣
t=0

φ(exp(t⃗a), (q⃗, p⃗))

= (⃗a× q⃗, a⃗× p⃗)(
∂

∂q1
, · · · , ∂

∂p3
)T

Then

−ia⃗(Y ) =

3∑
i=1

(dqi ∧ dpi)(⃗a, Y )

= (⃗a× q⃗ · dp⃗− a⃗× p⃗ · dq⃗)(Y )

= a⃗ · (q⃗ × dp⃗+ dq⃗ × p⃗)(Y )

= a⃗ · d(q⃗ × p⃗)(Y )

so that

µ̃a⃗(q⃗, p⃗) =< µ(q⃗, p⃗), a⃗ >

a⃗ · (q⃗ × p⃗) = µ(q⃗, p⃗) · a⃗

=⇒ µ(q⃗, p⃗) = q⃗ × p⃗, which is exactly angular momentum.
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