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3 Symplectic And Hamiltonian Group Actions

3.1 Hamiltonian group actions
Fundamental vector field and infinitesimal action.

Definition 1. Suppose a Lie group G acts smoothly on M. For simplicity we always assume that G is
connected.

o: GxM-— M
(g,l’) — (I)('g,l') = CDg(l')
Associated to each vector X € g = Lie(G), the map &~ : R x M — M, defined by
X (t,2) = D(exp(tX), ),

is an R-action on M. In other words, ®ey,ix) : M — M is a flow on M. The vector field Xp; on M,
given by

d
Xy = at tzoq)exp(tX)(x)a

is called the infinitesimal generator of the action corresponding to X.

Remark 1. So there is a map
B:g— Vect(M), X — Xy

It is called the infinitesimal action of g, and this a Lie algebra anti-homomorphism, i.e.

(X, Y]y = —[Xn, Y.

Proof. First, we will show a lemma

Lemma 1. (Ady;X )y = (®g)« X

O]

This property can be used in the proof of the symplectic forms on the coadjoint orbit (see Exercise 11.29

in [Aud04]).

One can define y(X) := —3(X), then v : g — Vect(M), X — X :=—X), is a Lie algebra homomor-
phism, where X is called the fundamental vector field in [Aud04].

3.1.1 Symplectic actions.

Now suppose M is symplectic with symplectic form w. The G-action is called symplectic if any element
g of G defines a diffeomorphism which preserves w (symplectomorphism):

* —
‘bgw = w.

Let us write the infinitesimal version of this equality, and then we can know that the fundamental vector
field is symplectic (locally Hamiltonian).



Proposition 1. All the fundamental vector fields of a symplectic action are symplectic vector fields.

Proof. Let X € g and let X be the associated infinitesimal generator. Let ¢; be the flow of X3,
¢i(x) = exp(tX) - & = Pexp(x) ()

Since for any element of G satisfies that ®jw = w, that is for any X € g, @:xp(tx)w = w.

LX]\/IW q)* (tX)w =0.

= & —o exp
We use now both Cartan formula and the fact that w is closed, to get:
di XpyW = 0.

O

Now, one can describe the Symplectic G-action by the fundamental vector field according to this propo-
sition.

3.1.2 Hamiltonian actions.

Definition 2. Similarly, the Symplectic G-action is called

e weakly Hamiltonian G-action if every fundamental vector field X is Hamiltonian, with Hamil-
tonian functions fix,that is X = X,
ixw = —djix.
where fi: g = C°(M), X — [ix.
e Hamiltonian G-action if it is weakly Hamiltonian, and the map ji is a Lie algebra homomorphism.
One says that the morphism f of Lie algebra i : (g,[-,:]) = (C*°(M),{-,-}) makes the following
diagram commute.

Cx(M) «+— g
‘| b
0 —— Ham(M) — Symp(M) —— HYM;R) —— 0

where the ¢ denotes the inclusion, v := —f, thus = is a Lie algebra morphism, where [ is the
infinitesimal action of Lie algebra g on M.!

Remark 2. What happens when we do not require that i is a Lie algebra morphism ?

Suppose that X +— fix is only a map from g to C°°(M).Then if we compute
vo i([X,Y]) = (X, Y]) = [v(X),7(Y)] = [v o i(X),v o a(Y)]
v(fxy)) = v({a(X), n(Y)}) = v({ix, iy})
we note that the problem may be solved up to a constant. Define ¢(X,Y) € R by
C(Xa Y) = {laXa ﬂY} - ﬂ[X,Y]-

Consequently, fi is a Lie algebra homomorphism implies that the constant is vanished.

'Since the action is Symplectic G-action, the fundamental vector field is indeed a Symplectic vector field.



3.1.3 The momentum map.

Definition 3. Associated with [ is the momentum map:

w: M — g* = Hom(g,R)
z— (X = ix(z)).

where fix(x) =< p(x),X > . Then the fundamental vector field X is the Hamiltonian vector field of
the function fix.

Remark 3. The condition that fix is Hamiltonian for the fundamental vector field X translates into
a condition on the tangent map.

Top: T,M — g x€M,ZeT,M
Z — Typ(2)

namely, VX € g,
dﬂx(Z) =< TI,U,(Z),X >= —iiw.
How to describe Hamiltonian action via the momentum map p instead of & ?
Definition 4. The momentum is G-equivariant or Ad*-equivariant if the follow diagram commute.
W
Mt g*

where g € G,
po®, = Adj o p.

Proposition 2. The momentum map p is G-equivariant if and only if the map g : (g,[,]) —
(C>(M),{-,-}) is a Lie algebra homomorphism.?

Proof. There is a proof on Page 203 of the book [MS17]. O

Proposition 3. Let f: M — N be an G-equivariant smooth map. Then for any X € g we have:
TfoXy=Xnof.

In other words, the following diagram commutes:

2We assumed that G is connected.



Proof. By equivariance we have:
fo (I)eazp(tX) = \Ijewp(tX) o f.

Differetiating with respect to t at ¢ = 0 and using the chain rule gives:

d d

Tfo (% tiO(I)ewp(tX)) = (% —o

lI/eJ:p(tX)) of

that is
TfoXy=Xnyof

O]

Proposition 4. The momentum map p: M — g* is an Poisson map, which in this case means that

{fomgoptu(z) ={f g}e(n(z))

where x € M, f,g: g* — R are two maps.

Proof. By density of polynomials in C'*° functions, it is enough to prove this for two polynomials f
and ¢g. Using the Leibniz rule, we can even assume that f and g are linear functions on g* , that is
f=Xeg,9g=Y €g.

For such an f, the Hamiltonian vector field of the composed map f o u is defined by

wz(Z, Xfou) = (df),u(ac)Tx/‘(Z)
< TLu(2), X >= djix(2)(2)
= WJU(Z? X)a

so that Xy,, = X and X0, = Y, we have now

{f o[, go /L}(CE) = WZL“(X:B’XQ:)
=< Tx/ﬁ(&:p)’ Y >
=< X,),Y > (G-equivariant),

as above. On the other hand,

{fi9H(pu(2)) =< p(2),[X, Y] >= - < Xge, ¥V >=< K,u(z)vy >

3.2 Existence and Uniqueness of Moment Map
Uniqueness of Moment Map

Let G be a compact Lie group.

Theorem 1. If H'(g;R) = 0, then moment maps for any Hamiltonian G-action is unique.



Proof. We suppose that fi' and i are two comoment maps for a Hamiltonian action. By definition
for each X € g, iy and % are both hamiltonian functions for X, thus ji% — i3 = ¢(X) is a locally
constant, and thus a constant on M (we will always assume that M is connected). So we get an element
ce g’ by

<, X >=c¢(X)=cx

Since jit, ji? are Lie algebra homomorphism, we have
Clxy] = ﬂ[IX,Y} - ﬂ[QX,Y] = {fix, iy} — {i%. i3}
= {iX + ex, iy + ey} — (i, iy
=0

Note that in this case the two moment maps are related by

in other words, they differed by a constant in g*. Thus for VX,Y € g,¢xy] = 0, ie. ¢ € [g,9]° =
H'(g;R) = 0. So we get u! = p%. O

Remark 4. In other words, moment map are unique up to elements of dual of the Lie algebra which
annihilate the commutator ideal.

The two extreme cases are:

e G is semi-simple: any symplectic action is hamiltonian, moment maps are unique.

e G is commutative: symplectic action may not be hamiltonian, moment maps are unique up to
any constant c € g.

Existense of Moment Maps

We want to know when is that a Symplectic action is Hamiltonnian action? There are two answers,
from the aspect of the smooth manifold M and Lie group G respectively.

Theorem 2. Suppose (M,w) is a connected compact symplectic manifold with H'(M;R) = 0, then

any symplectic action is hamiltonian.

Proof. Since H'(M;R) = 0, any symplectic vector field is hamiltonian vector field. So we can choose a
basis {X1,---, Xy} of g, for each X; , we can find a function fix, on M with

iXiw = —dﬂxi.

For any X € g, one can write
k
X=> =xX;
i=1

and we define

k
px = Z = Aiflx;-
=1



This define a linear map i : g — C*°(M) with
ixw = —dfix (i and d are both linear)

In other words, the G-action is a weakly hamiltonian action, we should prove that f is a Lie algebra
morphism.

We consider the function,
cix,y] = fpxy) — 1ix, iy }
derx,y) = diix,y) — difix, fiy }

= —’L'[X7y]w + Z'[ny}w
=0

thus the function ¢y y) is actually a constant, we can reduce it to 0 by some hypothesis. O
Theorem 3. Let G be a connected Lie group with
H'(g;R) = H*(g;R) = 0,
then any symplectic G-action is Hamiltonian.
Proof. First note that H'(g;R) = 0 < [g,g] = g.So any fundamental vector field X can be written as
[

a summation of vector field of the form [Y, Z], which is hamiltonian since the Lie bracket of any two
symplectic vector fields is Hamiltonian.

We take an arbitary vector space lift 7 : g — C°°(M) for each basis vector X € g, we choose 7(X) =
Tx € C*°(M) such that
X, = X.

The map X — 7x may not be a Lie algebra morphism. By construction, 7y y is hamiltonian function
for [X,Y], and {7x, 7y} is a hamiltonian function for [X,Y]. Since [X,Y] = [X,Y],

Txy] — {7x, v} =c¢(X,Y) ER.
By the jacobi identity, ¢ = 0.Since H?(g;R) = 0, there is a b € g* satisfying ¢ = b, we define

g:g— C*(M)
X — x ::Tx+b(X)

Now, we obtained that
/j[X,Y} = T[X,Y] + b([X7 Y]) - {TXa TY} - {MXa MY}
So ji is a Lie algebra homomorphism. O

Corollary 1. If G is semi-simple, then any symplectic action is hamiltionian.



3.3 Classical Examples

Example 1. If H : M — R is any function and if the Hamiltonian vector field X is complete, its flow
defines a Hamiltonian R—action, the momentum map of which is H.

Example 2. The circle S acts on C" by u - (21, ,2,) = (u21,- - ,uzy,), that is

d:9 xC"—C”

(eieu (Zlv e azn)) — (ei9 Rl )67;9 : Zn)

The fundamental vector field associated with % e T1S! is

d .
X(Z) = % ( i 21, 7ezt Zn)
t=0
:(221, 72271)

Since the standard symplectic form w = dx A dy on C", we can get

- 0 0
X = Z(—yaa?j +$j87yj)-

Jj=1

So we compute [i o ,
o0

ixw = —dfi o
26

n a n
dei A dy; Z y]a jaT/j)’ Y)= Z(—yjdyj — zjda;)(Y)
= j=1 j=1

- dﬂ% = Z(xjdxj + yjdyj).
j=1

The moment map for this action is the hamiltonian

n

p= %Z |25 2.

Jj=1

Example 3. (Linear momentum). Consider a translation in R3, the phase space is T*R? = RS =
(¢1,92, 93, p1, P2, p3) with the symplectic form w = Z?Zl dg; A dp;. Then the action is

d:R3x RS — RS
(67 ((j’ﬁ)) = (‘7_ 5715), where a = ((11,(12,@3) S Rg-

So the fundamental vector field associated X = @ is,

d ’ )
X =— 7 — exp(td),p) = —aj=).
X= | T ot =3 aig

Now we compute the function fix for it, that is —dpugz = ixw.



3
ixw(Y) =) dg Adpi(X,Y)
i=1

= —d-dq(Y)
= —d(i@- (Y)

So [iz(q,p) = d - ¢, then we get the moment map from

—

fa(q, p) =< p(q,p),a@) >=a-p
= u(q,p) = P, which is exactly the linear momentum.
Example 4. (Angular momentunm) Let G = SO(3) act on R3 by
(A, =A-q

we consider the cotangent lift of this action which is symplectic action on cotangent bundle R®. The
infinitesimal version of this action is

d :50(3) x RS — RS
(X, (¢:p) = (X -¢, X - P)

0 —a3 a9
Since the map f : (a1, a2,a3) — as 0 —ay | gives an isomorphism from so(3) to R3, we can
—ay @ 0

compute the map
¢ :R® xRS - RS
(@, (7,p)) — (@ x q,d x p)

where @ = (a1, az,as3) € R3.

L d o o
a= | ylexp(ta),(qp))
t=0
Ll 0 0 1
=(aXxgqg,axX Y] Y
(@xq ﬁ)(aq1 8p3)
Then
3
—ig(Y) = Z(d% Adp;)(@,Y)
=1
=@xq-dp—axp-dq)y)
=d-(xdp+dgxp)(Y)
— G- d(@x DY)
so that

fia(q, p) =< (g, p),a >
- (qxp)=mq,p)-a

= u(q,p) = ¢ x p, which is exactly angular momentum.
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