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Symmetry in Symplectic Geometry

in symplectic geometry, we study motions in phase space
of classical mechanical systems (i.e., Hamiltonian systems
on symplectic manifolds)
Almost all mechanical systems have symmetries which
imply constants of motions (=conservative quantities, i.e.,
first integrals of HS) according to E. Noether
Slogan (Yang): Symmetry determines interaction!
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Emmy Noether: Creative Mathematical Genius
(1882-1935)
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Emmy Noether: Creative Mathematical Genius
(1882-1935)

E. Noether, Invariante Variationsprobleme, Nachr. König.
Gesell. Wissen. Göttingen, Math.-Phys. Kl. (1918),
235-257
Y. Kosmann-Schwarzbach, The Noether Theorems.
Invariance and Conservation Laws in the Twentieth
Century, Springer, New York, 2011 (Including the English
translation of Noether’s classical paper above)
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Classical Examples

Following Noether,

space translation invariance⇒ conservation of linear
momentum
time translation invariance⇒ conservation of energy
rotational invariance⇒ conservation of angular momentum
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Classical Examples

Harmonic Oscillator
pendulum (simple(Audin p88, p90, p93), spherical(Audin,
p103) and magnetic spherical)
rigid bodies and tops (motions on Lie groups)
N-body problem
Fixed center problem
geodesics
.................

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Classical Examples

Ref: Cushman-Bates, Global Aspects of Classical Integrable
Systems
Some are even integrable systems!!!

Harmonic Oscillators
pendulums (simple, spherical (da Silva(p178)) and
magnetic spherical)
geodesics on S3

Kepler problem
tops (Euler, Lagrange, Kovalevskaya)
two-center problem a la Euler
...............

How good are they?
How to prove nonintegrability? 3BP
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Symmetry in Symplectic Geometry

Other reasons other than the symmetry in mechanics
”orbit methods” (Kostant, Kirillov,...) use SG in an essential
way to construct representations. Fundamental objects are
the coadjoint orbits which are naturally symplectic
Hamiltonian action⇒ functions on the symplectic
manifolds⇒ play the game of Morse theory in SG
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Symmetry in Symplectic Geometry

Geometric and Topological Aspects
Dynamical Aspects (stability)
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Equivariant Cohomology

Group Action

Group: compact Lie groups/algebraic groups/finite
groups/discrete groups, R, S1, SO(n), SU(n), Sp(2n) and
their complexification; discrete group
Space M: manifold with various additional structures
transformation group of the space: Aut(M) (e.g.
Homeo(M),Diff (M),Sym(M, ω),Ham(M, ω))
G group action on M=group homomorphism G→ Aut(M)
compatible with additional structures
Dynamical Systems: G = R
G group action on G itself: left, right, adjoint, coadjoint
actions
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Group Action

A way to construct new spaces

orbit, orbit map and fundamental vector fields
isotropy group/ stabilizer
transitive action
free action, locally free action (isotropy group discrete)
effective action: each group element g 6= e moves at least
one p ∈ M
quotient space=orbit space: topological (Hausdorff?) or
additional properties?
slice theorem (equivariant tubular neighborhood theorem)
G group action on G: homogeneous space, flag variety
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Equivariant Cohomology

Group Actions: Examples

Ref: Audin, p11-12, p18 and exercise(p37)
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Equivariant Cohomology: universal principal G-bundle

Ref: Audin (p178)
universal: a numerable principal G-bundle E → B is called
universal if (1) for any numerable principal G-bundle
E → B, there exists a map f : B → B such that E is
isomorphic to f ∗E ; (2) two maps f ,g : B → B induce
isomorphic bundles iff they are homotopic
Milnor Join: Milnor’s beautiful and explicit construction of
universal principal G-bundle EG→ BG (Audin p179)
EG is contractible and the action of G on EG is free; BG
the classifying space
BU(k) = Gk (C∞) the infinite Grassmannian
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Equivariant Cohomology: Borel Construction

G acts on M × EG by g · (x ,e) = (g · x ,g · e) freely (since
G acts on the second factor freely)
Borel construction: MG := M ×G EG
MG is the homotopy theoretical quotient of M which is good
enough and has the same homotopy type as M/G when
the genuine quotient M/G is ”good” ( M/G is smooth)
G-action free, MG = M/G; G-action trivial, MG = BG ×M,
in particular, we have MG = BG when M is a point!
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Equivariant Cohomology

H∗G(M) := H∗(MG)

H∗G(M) is a ring, further, it is an H∗G(pt)-module
For G = S1, BS1 = CP∞ and H∗(BSI) is a polynomial ring
on a generator u of degree 2 (Audin, p186)
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Equivariant Cohomology: various models

Ref: Guillemin-Sternberg: SUSY and equivariant de Rham
for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory

naı̈ve guess: Ω(M)⊗ Ω(EG) corresponding to M × EG
then take G-invariant part, hard to treat the 2nd factor due
to∞-dim.
idea(1): introduce Lie supergroup G∗ whose underlying
manifold is G and underlying algebra is

g̃ := g−1 ⊕ g0 ⊕ g1

with g−1 generated by ιXa , g0 generated by LXa and g1 by
de Rham differential d . Xa fundamental vector field
corresponding to the basis of g
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Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory

idea(2): replace Ω(EG) by an commutative graded
superalgebra A equipped with a representationof G∗ and
such that

acyclic w.r.t. d (corresponding to EG is contractible)
∃ θb ∈ A1 s.t. ιXaθ

b = δb
a (corresponding to G acting on EG

locally freely)

we substitute for Ω(M)⊗ Ω(EG) the algebra Ω(M)⊗ A
then the complex (Ω(M)⊗ A)basic replaces Ω(MG);
basic=G-invariant+annihilated by ιXa
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Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory
to be checked

independent of A
gives the right answer: the cohomology of the complex
(Ω(M)⊗ A)basic is isomorphic to H∗G(M)
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Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory

Weil model: introduce Weil algebra W = ∧(g∗)⊗ S(g∗); the
model is H∗((Ω(M)⊗W )basic ,d)

Cartan model: H∗((Ω(M)⊗ S(g∗))G,dG)

They are the SAME!
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Equivariant Cohomology: SUSY perspective

Mathai-Quillen construction of a universal equivariant
Thom form
Fermionic/super Fourier transform, Berezin integral
V. Mathai and D. Quillen, Superconnections, Thom classes
and equivariant differential forms, Topology 25(1986), no.
1, 85-110
J. Kalkman, A BRST model applied to symplectic
geometry, Thesis, Utrecht (1993)
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Localization Theorem: Torus action

Ref: Audin (p204)
For torus T -action, Forgetting torsion, the H∗BT -module H∗T (M)
looks very much like the free H∗BT -module H∗T (F ) with F fixed
points

Theorem
Let i : F ↪→ M be the inclusion of fixed points of the action of a
torus T on a manifold M. Then the supports of both the kernel
and cokernel of

i∗ : H∗T (M)→ H∗T (F )

are included in
⋃

H stabilizer 6=T h
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Localization formula: Torus action

Ref: Audin (p207)

If x ∈ H∗T (M), in a suitable localization,

x =
∑
Z⊂F

iZ∗ i∗Z x
eT (νZ )
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S1-euivariant Cohomology

Ref: da Silva (p229)
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Canonical Symplectic Form

Ref: da Silva (p163); Audin (p60); Marsden-Ratiu

Lie-Poisson or Kostant-Kirillov-Souriau: for f ,g ∈ C∞(g∗)
and ξ ∈ g∗

{f ,g}(ξ) := 〈ξ, [dfξ,dgξ]〉

where dfξ : Tξg∗ = g∗ → R is identified to an element of g
the symplectic form

ωξ(X ,Y ) = 〈ξ, [X ,Y ]〉
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Hermitian matrices

Ref: da Silva (p156), Audin
unitary group U(n) acts on the space of n × n complex
Hermitian matrices
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Hamiltonian Group Actions

symplectic actions
Hamiltonian actions
symplectic v.s. Hamiltonian
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Moment Map

µ : M → g∗
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Canonical Moment Map

Lie group G acts on the symplectic manifold G · ξ for ξ ∈ g∗

the inclusion G · ξ ⊂ g∗ is a moment map for the G-action
on its coadjoint orbit G · ξ
this is the factory/motherland for examples of moment map
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Noether Theorem in the light of moment map

Ref: Audin, p79

Theorem
Let H be a function on M which is invariant under the G-action.
Thus µ is constant on the trajectories of the Hamiltonian vector
field XH .

write all the classical conservation laws in terms of moment
map!!!
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Examples of Momemt Map

Ref: da Silva (p191)

coadjoint orbit of unitary group (Audin, p 76)
Complex Grassmannian (Audin, p101)
symplectic teardrop (symplectic orbifold, Audin, p101)
weighted projective spaces (Audin p102)
symplectic cutting due to Lerman: a simple and elegant
construction of new symplectic manifold out of Hamiltonian
S1 action and symplectic reduction (Audin p102, p139)
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Existence of Moment Maps

Ref: da Silva (p195)

Theorem

If H1(g,R) = H2(g,R) = 0, then any symplectic G-action is
Hamiltonian

A compact Lie group G is semisimple if g = [g, g]

(Whitehead Lemma) Let G be a compact Lie group, then G
is semisimple iff H1(g,R) = H2(g,R) = 0
So if G is semisimple, then any symplectic G-action is
Hamiltonian
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Uniqueness of Moment Maps

Ref: da Silva(p196)

Theorem

For a compact Lie group G, if H1(g,R) = 0, then moment maps
for Hamiltonian G-actions are unique

In general, moment maps are unique up to elements of the
dual of the Lie algebra which annihilate the commutator
ideal
one extreme: G semisimple: any symplectic action is
Hamiltonian and moment maps are unique
another extreme: G commutative: symplectic actions may
not be Hamiltonian, moment maps are unique up to any
constant c ∈ g∗
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Marsden-Weinstein-Meyer Theorem

Ref: da Silva

Theorem (Marsden-Weinstein, Meyer)

Let (M, ω,G, µ) be a Hamiltonian G-space for a compact Lie
group G. Let i : µ−1(0) ↪→ M be the inclusion map. Assume
that G acts freely on µ−1(0). Then

the orbit space Mred = µ−1(0)/G is a smooth manifold
π : µ−1(0)→ Mred is a principal G-bundle
there is a symplectic form ωred on Mred satisfying
i∗ω = π∗ωred

(Mred, ωred): reduced space, symplectic quotient,
Marsden-Weinstein-Meyer quotient, symplectic reduction
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Variants

Lagrangian Reduction
tangent and cotangent bundle reduction
semidirect product reduction SE(3) = SO(3) n R3

Routh reduction
reduction by stages and group extensions
singular reduction
multisymplectic reduction
discrete mechanical system motivated by numerical
analysis
.........
Kähler (Atiyah) and hyperKähler (Hitchin) reduction
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Reduction of Dynamics

Ref: da Silva (p173)
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Examples of Reduction

Ref: da Silva (p198)
symplectic cuttings
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Very Brief History on Symplectic Reduction

Ref: Marsden-Weinstein, Some comments on the history,
theory and applications of symplectic reduction, 2001
For moment map

S. Lie: (1) an action of a Lie group G with Lie algebra g on
a symplectic manifold M should be accompained by a map
µ : M → g∗ equivariant w.r.t. the coadjoint action (2)the
orbits are symplectic
In old days, links with mechaniccal system with
symmetries: Euler, Lagrange, Hamilton, Poisson, Jacobi,
Routh, Riemann, Liouville, Lie, Poincaré, Noether.
moment map and its equivariance in modern form: Kostant
(1966), Souriau (1966, 1970) in the general symplectic
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Very Brief History on Symplectic Reduction

For moment map
S. Smale, Topology and mechanics, Invent. Math.
10(1970), 305-331; 11(1970), 45-64 (apply topology,
especially Morse theory, to study relative equilibria; lifted
action from a manifold N to its cotangent bundle T ∗N)
about terminology: Smale (angular momentum); Souriau
(application moment); Marsden-Weinstein (moment);
Duistermaat-Cushman (momentum),
Marsden-Weinstein/Abraham-Marsden (since 1976,
momentum map/mapping); Guillemin-Sternberg (moment
map/mapping)
more history on moment map: Marsden-Ratiu (Introduction
to mechanics and symmetry, 1999)
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Very Brief History on Symplectic Reduction

Ref: Marsden-Weinstein, Some comments on the history,
theory and applications of symplectic reduction, 2001
For symplectic reduction

For G abelian, there are many precursors: Lagrange,
Poisson, Jacobi, Routh
Smale’s observation: Jacobi’s ”elimination of the node” in
SO(3) symmetric problems is best understood as the
division of a nonzero angular momentum level by the
SO(2) subgroup that fixes the momentum value
For cotangent bundle: Smale clearly stated that coadjoint
isotropy group Gk of k ∈ g∗ leaves µ−1(k) invariant, but he
only divided by Gk after fixing the total energy as well, in
order to obtain the ”minimal” manifold on which to analyze
the reduced dynamics
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Very Brief History on Symplectic Reduction

For symplectic reduction
Marsden-Weinstein (1974): combine Souriau’s momentum
map for general symplectic actions, Smale’s idea of
dividing the momentum level by the coadjoint isotropy
group, and Cartan’s idea of removing the degeneracy of a
2-form by passing to the leaf space of the form’s null
foliation
Meyer (1973) and Marsden-Weinstein (1974): the key
observation was that the leaves of the null foliation are
precisely the (connected components of the) orbits of the
coadjoint isotropy group
Marsden-Weinstein (1974): construction of the coadjoint
orbits in g∗ by reduction of the cotangent bundle T ∗G with
its canonical symplectic structure
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Know past, know future

For masters like Euler, Lagrange..., their aim was to
eliminate variables associated with symmetries in order to
simplify calculations in concrete examples and much of
these works were done with coordinate (Ref: Whittaker,
1907)
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Know past, know future

Routh (1860, 1884): reduction of systems with cyclic
variables; Jacobi and Liouville (1870): reduction of
systems with integrals in involution; modern Lagrangian
reduction for the action of abelian groups
Rigid body: Euler got the equiation aroud 1740; key
example of coadjoint orbit reduction/ Euler-Poincaré
reduction; Lagrange (1788) understood reduction as we do
for SO(3) today;
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Know past, know future

Jacobi’s elimination of node for reducing the gravitational
NBP by group SE(3) of Euclidean motions around 1860
it is related to work on rotating fluid masses held together
by gravitation forces (star soup!) studied by Riemann,
Jacobi, Poincaré,....
Hidden in these examples is much of the beauty of modern
reduction, stability and bifurcation theory for mechanical
system with symmetries
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Know past, know future

both symplectic and Poisson geometry have their roots in
the works of Lagrange, Jacobi and Poisson
they matured at the hands of Lie, and he discovered many
modern concepts, e.g., Lie-Poisson bracket ong∗

How is it possible? Mystery!
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Know past, know future

notion of manifold: Lie, Poincaé, Weyl, Cartan, Reeb,
Synge,.....
it is time for a more general and intrinsic view of mechanics
around 1960s
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Know past, know future

From 1960s, geometric mechanics exploded: Abraham,
Arnold, Kirillov, Kostant, Mackey, MacLane, Segal,
Sternberg, Smale, Souriau
Kirillov and Kostant: deep connections between mechanics
and pure math (orbit methods in group representations)
Arnold and Smale were closer to mechanics
Souriau: more in mathematical physics
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Know past, know future

modern vision of mechanics combines strong links to
important questions in pure math with traditional classical
mechanics of particles, rigid bodies, fields, fluids,
plasmas......
symmetries vary from obvious translational and rotational
symmetries to less obvious particle relabeling symmetries
in fluids, to the ”hidden” symmetries underlying integrable
systems
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Know past, know future

Arnold (1966) focused on systems whose configuration
space is a Lie group (e.g. rigid body and fluid as did by
Poincaré)
Samle (1970) focused on bifurcations of relative equilibria
(number and stability of relative equilibria in planar NBP by
a topological study of the energy-momentum mapping)
these paved the way for Meyer and Marsden-Weinstein
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Motivating Example

Ref: da Silva, Audin (p84)

G = C\{0} acts on M = Cn:

Ψ : (C\{0})× Cn → Cn

(λ, z) 7→ λ · z =: Ψλ(z)

orbits: through nonzero z ∈ Cn, it is the punctured complex
line C\{0}; through 0 ∈ Cn, it is just a single point which is
”unstable”
the orbit space is M/G = CPn−1 t {point}
the quotient topology restricts to the usual topology on
CPn−1; the only open set containing {point} in the quotient
topology is the full space. The quotient topology in M/G is
NOT Hausdorff!!

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Coadjoint Orbits
Moment Map
Symplectic Reduction
Symplectic Quotient=GIT Quotient

Motivating Example

it suffices to remove 0 from Cn to obtain a Hausdorff orbit
space: CPn−1 (GIT quotient)
it is well known that CPn−1 has a COMPACT (but NOT
COMPLEX) description

CPn−1 = (Cn\{0})/(C\{0}) = S2n−1/S1

the last step is in fact a symplectic quotient!
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Motivating Example

the standard symplectic structure on Cn is

ω =
i
2

∑
dzi ∧ dz̄i =

∑
dxi ∧ dyi =

∑
ridri ∧ dθi

consider the S1 group action ψ on (Cn, ω)

ψ : S1 × Cn → Cn

(t = eiθ, z) 7→ t · z

the action ψ is Hamiltonian action with moment map

µ : Cn → R

z 7→ −|z|
2

2
+ cost .
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Motivating Example

This is because

ιX ]ω = −
∑

ridri = −1
2

∑
dr2 = dµ

with X ] = ∂
∂θ1

+ ∂
∂θ2

+ · · · ∂
∂θn

choose constant to be 1
2 , then µ−1(0) = S2n−1, and the

orbit space of the zero level set of the moment map is

µ−1(0)/S1 = S2n−1/S1 = CPn−1

we realize the GIT quotient CPn−1 as a symplectic
quotient/reduced space!
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Motivating Example

three major themes for Hamiltonian torus action

(Marsden-Weinstein-Meyer) the reduced spaces are
symplectic manifolds (whence the symplectic quotient)
(Atiyah-Guillemin-Sternberg) the image of the moment
map is a convex polytope
(Delzant) Hamiltonian Tn spaces are classified by the
image of the moment map
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Convexity theorem

Ref: da Silva (p199)

Theorem (Atiyah, Guillemin-Sternberg)

Let (M, ω) be a compact symplectic manifold, and
G = T m = Rm/Zm be an m-torus. Suppose that
ψ : T m → Symp(M, ω) is a Hamiltonian action with moment
map µ : M →]Rm. Then

The levels of µ are connected
The image of µ is convex
The image of µ is the convex hull of the images of the fixed
points of the action

The image µ(M) of the moment map is called moment polytope
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Refinement

Atiyah: Kähler version
Hitchin et al: HyperKähler version
noncommutative convexity theorem due to Kirwan
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Examples

Ref: da Silva (p202), Audin (p137)

torus action on (weighted) projective spaces
Hirzebruch surfaces (Audin p137, p145)
Blowing-up the projective space (Audin p138)
torus action on the Hermitian matrices (Audin p141)
Permutahedron (Audin, p142)
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Applications

Kushnirenko theorem about the enumeration of solutions
to a particular system of algebraic equations (Audin, p4,
p129)
Toeplitz-Hausdorff theorem about the numerical image of
an operator on a Hilbert space (Audin, p5, p113)
Schur-Horn theorem about the possible values of the
diagonal entries in a Hermitian matrix of a given spectrum
(Audin, p6, p117)
compact symplectic SU(2)-manifolds of dim. 4 due to
Iglesias (Audin, p131)
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Completely Integrable Hamiltonian System (CIHS)

A CIHS is a collection of n independent (over an open
dense subset) Poisson commuting functions defined over a
symplectic manifold M2n

Mineur-Arnold-Liouville theorem: locally, near a compact
connected component of a regular level of an CIHS, there
is a Hamiltonian torus action
action-angle coordinates (only defined locally in general.
e.g., there are NO GLOBAL action-angle coordinates for
spherical pendulum (Audin, p103))
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CIHS v.s. Torus Action

the moment map of an effective Hamiltonian torus action
on a symplectic manifold of the right dimension is an CIHS
On the other hand, there are many CIHS that do not come
from integrable torus action, e.g. any nonconstant function
on a surface is a CIHS
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

we focus on (M4, ω) compact connected symplectic
manifold
the momentum map F = (f1, f2) ∈ C∞(M,R2) gives a
CIHS on M: (1) {f1, f2} = 0; (2) Xf1 ,Xf2 linearly
independent almost everywhere
Def: CIHS F = (f1, f2) is toric if the flows of Xf1 and Xf2 are
2π-periodic and the action

T 2 ×M → M, ((t1, t2), x) 7→ ((φt1
f1
◦ φt2

f2
)(x))

is effective
According to Atiyah and Guillemin-Sternberg:
P = F (M) ⊂ R2 is convex
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

Singularities of CIHS
points where Xf1 , Xf2 are linearly dependent
Eliasson: notion of nondegenerate singularity⇒ normal
form
∃ local coordinates (x1, x2, ξ1, ξ2) such that
ω = dx1 ∧ dξ1 + dx2 ∧ dξ2 and (f1, f2) ∼ (q1,q2) where qi
are some of

qi = ξ (regular component)
qi =

x2
i +ξ2

i
2 (elliptic component)

qi = xiξi (hyperbolic component)
q1 = x1ξ2 − x2ξ1,q2 = x1ξ1 + x2ξ2 (focus-focus component)
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

focus-focus singularity
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

Def: Semitoric system: a CIHS F = (J,H) : (M4, ω)→ R2

is semitoric if

J is proper
the Hamiltonian flow of J yields an effective S1-action
F has non-degenerate singularities only (like toric) with no
hyperbolic component (these create problems, e.g.,
disconnected fibers)

compared with toric case, focus-focus singularities appear
for a semitoric system, F (M) need NOT be a convex
polygon
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

An Example: Spin-Oscillator
phase space (M, ω) = S2

(x ,y ,z) × R2
(u,v), ω = ωS2 ⊕ ωR2

F = (J,H): J = u2+v2

2 + z and H = ux+vy
2
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

Another: Coupled angular momenta (Sadovki-Zhilinskiı́, 1999)
(M, ω) = (S2

(x1,y1,z1) × S2
(x2,y2,z2),R1ωS2 ⊕ R2ωS2),

R1,R2 > 0, X = x1x2 + y1y2
J = R1z1 + R2z2 and Ht = (1− t)z1 + t(X + z1z2)
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

(M, ω,F ) and (M ′, ω′,F ′) semitoric are isomorphic⇔
∃φ : M → M ′ symplectomorphism and

g : F (M)→ F ′(M ′),g(x , y) = (x ,g(2)(x , y)),
∂g(2)

∂y
> 0

such that F ′ ◦ φ = g ◦ F
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Pelayo-Vù Ngo. c, semitoric IS, 2007-2011

Theorem (Pelayo-Vù Ngo. c)

Semitoric systems are classified up to isomorphism through
five invariants

the number mf of focus-focus singula points
a family of convex polygons obtained from F (M)

the heights of the images of focus-focus points in these
polygons
a formal series for each focus-focus point
an integer for each focus-focus point (twisting index)

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

Outline

1 Group Action on Manifolds
Equivariant Cohomology

2 Symplectic/Hamiltonian Action on Symplectic Manifolds
Coadjoint Orbits
Moment Map
Symplectic Reduction
Symplectic quotient=GIT Quotient

3 Torus Actions
Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

4 Moduli Spaces in Gauge Theory

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

Toric Manifolds/Toric Varieties

Ref: Audin, VII §1
Toric varieties were introduced by Demazure as closures of
complex torus orbits in algebraic varieties
For us, they are very beautiful families of symplectic
manifolds endowed with Hamiltonian TORUS actions (even
half-dimension). In fact, according to Delzant, they are the
compact symplectic manifolds endowed with completely
integrable torus actions!!!
They play important roles in combinatorics (hence
everything is explicit! polyhedron and fans), algebraic
geometry, complex geometry, symplectic geometry,
mathematical physics (string theory (Gromov-Witten on
toric Calabi-Yau,...), gauge theory (gauged linear sigma
model...))
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Symplectic Reduction and Convex Polyhedron

Construction of toric manifold XΣ: convex polyhedron P ⇒
Fan Σ(P)⇒ toric manifold XΣ

Conversely, we can associate a polyhedron to a toric
manifold: Following Delzant, XΣ can be endowed with
symplectic forms for which the action of the compact torus
is completely integrable and the image of the moment map
is one of the convex polyhedra leading toe fan Σ——the
shape of the polyhedron determines the fan and the
volumes of its faces then determine the symplectic form
Fact: All the primitive polyhedra are indeed images of
moment map of completely integrable torus actions (This,
together with the uniqueness theorem, constitute the
classification theorem of Delzant, See Audin, Thm
VII.2.1(p 245) with motivating example p244)
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Compact Complex Toric Surfaces

Theorem (Oda)

Any compact complex toric surface is obtained from CP2 or
from a Hirzebruch surface by a finite sequence of blow ups
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Symplectic Toric Manifold

A 2n-dim Symplectic toric manifold is a compact connected
symplectic manifold (M2n, ω) equipped with an effective
Hamiltonian action of an n-torus T n with the corresponding
moment map µ : M → Rn
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Delzant Polytopes

Ref: da Silva, Audin
A Delzant polytope ∆ ⊂ Rn is a convex polytope such that

it is simple: there are n edges meeting at each vertex
it is rational: the edges meeting at the vertex p are rational
in the sense that each edge is of the form
p + tu, t ≥ 0,u ∈ Zn

it is smooth: for each vertex, the corresponding u1, ...,un
can be chosen to be a Z-basis of Zn

Note: it is closely related to Newton polytopes (which are the
nonsingular n-valent polytopes), except that the vertices of a
Newton polytope are required to lie on the integer lattice and for
a Delzant polytope they are not

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

Delzant Theorem

classification theorem for symplectic toric manifold in terms of
combinatorial data.

Theorem (Delzant)
Symplectic toric manifolds are classified by Delzant polytopes.
More precisely, there is a one-to-one correspondence

{toric manifolds} 1−1−→ {Delzant polytopes}
(M2n, ω,T n, µ) 7→ µ(M)
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Birkhäuser, Boston, 1994
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Duistermaat-Heckman Polynomial

Ref: da Silva (p223)
(M, ω,G, µ) Hamiltonian G-space with G torus and µ
proper
Liouville/symplectic measure

mω(U) =

∫
U

ωn

n!

for Borel subset U of M
Duistermaat-Heckman measure, mDH on g∗ is the
pushforward of mω by µ : M → g∗, i.e.,

mDH(U) := (µ∗mω)(U) =

∫
µ−1(U)

ωn

n!

for Borel subset U ⊂ g∗

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

Duistermaat-Heckman Polynomial

for a compactly-supported function h ∈ C∞0 (g∗), its integral
w.r.t. mDH is defined to be∫

g∗
hdmDH :=

∫
M

(h ◦ µ)
ωn

n!

regard g∗ as a vector space Rn, there is also the Lebesgue
measure m0

the relation between mDH and m0 is governed by the
Radon-Nikodym derivative dmDH

dm0
which is a generalized

function s.t. ∫
g∗

hdmDH =

∫
g∗

h
dmDH

dm0
dm0
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Duistermaat-Heckman Polynomial

Theorem (Duistermaat-Heckman,1982)
The Duistermaat-Heckman measure is a piecewise polynomial
multiple of Lebesgue measure m0 on g ' Rn, that is the
Radon-Nikodym derivative f = dmDH

dm0
is piecewise polynomial.

More precisely, for any Borel subset U of g∗,

mDH(U) =

∫
U

f (x)dx

where dx = dm0 is the Lebesgue volume form on U and
f : g∗ ' Rn → R is polynomial on any region consisting of
regular values of µ.
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Duistermaat-Heckman Polynomial

the Radon-Nikodym derivative f is called the
Duistermaat-Heckman polynomial
For toric, the Duistermaat-Heckman polynomial is a
universal constant equal to (2π)n when the polytope ∆ is
n-dimensional
So the symplectic volume (M∆, ω∆) (Delzant construction)
is (2π)n times the Euclidean volume of Delzant polytope ∆
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Variation of Symplectic Volume

A natural question about the symplectic reduction

(M, ω,G, µ) Hamiltonian G-space with G an n-torus (could
be general G, see Guillemin, PM 122) and µ proper: we
take G = S1 for simplicity
Suppose that G acts freely on µ−1(0), it also acts freely on
nearby levels µ−1(t) for t ∈ g∗, t ≈ 0
consider the reduced spaces Mred = µ−1(0)/G and
Mt = µ−1(t)/G with reduced symplectic forms ωred and ωt

What is the relation between these reduced spaces as
symplectic manifolds?
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Variation of Symplectic Volume

Theorem (Duistermaat-Heckman,1982)

The cohomology class of the reduced symplectic form [ωt ]
varies linearly in t. More specifically,

[ωt ] = [ωred] = tc

where c ∈ H2
de Rham(Mred) is the first Chern class of the

S1-bundle Z → Mred

In general, once t1 and t2 lies in the same component of regular
values of the moment map, the difference of cohomology
classes [ωt1 ]− [ωt2 ] is a linear function of t1 − t2
Example: Audin (p 192)
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Variation of Symplectic Volume

(M, ω,S1, µ) Hamiltonian S1-space of dim. 2n and (Mx , ωx )
be its reduced space at level x
for x ≈ 0, the symplectic volume of Mx

Vol(Mx ) =

∫
Mx

ωn−1
x

(n − 1)!
=

∫
Mred

(ωred − xβ)n−1

(n − 1)!

a polynomial in x of degree n − 1
in another way

Vol(Mx ) =

∫
Z

π∗(ωred − xβ)n−1

(n − 1)!
∧ α

α a chosen connection from the S1-bundle Z → Mred, β its
curvature form
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Duistermaat-Heckman v.s. Equivariant Cohomology

Berline-Vergne: the language of equivanriant cohomology
fits very well with the study of Hamiltonian actions, since
the existence of a moment map for the Hamiltonian
G-action on the symplectic manifold M is equivalent to the
existence of an extension of the symplectic form to the
Borel construction MG on M
this is a perfect example of a theorem which becomes
practically tautological once the right language to state it is
found!

SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

Duistermaat-Heckman v.s. Equivariant Cohomology

Ref: Audin, p189

Theorem
Let (M, ω) be a symplectic manifold endowed with a symplectic
action of the Lie group G. Let µ : M → g∗ be any differentiable
map. The formula

ω] = ω + d〈θ, µ〉

defines a closed 2-form on the Borel construction MG iff the
G-action is Hamiltonian with moment map µ

Here θ ⊗ µ is a 1-form valued in g⊗ g∗, and may be contracted
to give a 1-form valued in R which we denote 〈θ, µ〉
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Duistermaat-Heckman v.s. Equivariant Cohomology

periodic Hamiltonian satisfies the ”Exact Stationary Phase
Formula”

Theorem (Duistermaat-Heckman, 1982)

Let (M, ω) be a symplectic manifold of dim. 2n and let H be a
periodic Hamiltonian on M with only isolated fixed points. Then∫

M
e−Hu ω

∧n

n!
=

∑
Z∈F

e−uH(Z )

eS1(νZ )

isolatedness can be relaxed
circle action can be replaced by torus action
this is an equality of formal power series in the variable u
and u−1

polynomial theorem is a corollary (Audin, p209)
applications (Audin p210)SUN@CNU Symmetry in SG



Group Action on Manifolds
Symplectic/Hamiltonian Action on Symplectic Manifolds

Torus Actions
Moduli Spaces in Gauge Theory

Convexity Theorem
Completely Integrable Hamiltonian Systems
Toric Manifolds
Duistermaat-Heckman

References

J. J. Duistermaat and G. Heckman, On the variation in the
cohomology of the symplectic form of the reduced phase
space, Invent. Math. 69 (1982), 259-268; Addendum,
Invent. Math. 72 (1983), 153-158
M. F. Atiyah and R. Bott, The moment map and equivariant
cohomology, Topology 23(1984) ,1-28
V. A. Ginsburg, Equivariant cohomologies and Kähler’s
geometry, Func. Anal. and Appl. 21(1987) 271-283
For stationary phase formula, see J. J. Duistermaat,
Oscillatory integrals, Lagrangian immersions and unfolding
of singularities, Comm. Pure Appl. Math. 27(1974),
207-281
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Moduli Spaces are the Spaces of the Future!

Riemann, Mumford, Deligne, Griffths, Kodaira-Spencer
moduli spaces appearing in gauge theory and string
theory(moduli space of various connections, various
bundles, pseudo-holomorphic curves): Witten, Donadson,
Nahm, Hitchin, Ruan, Gromov-Witten, Floer,
Fukaya.....(TQFT)
derived shifted Poisson/Symplectic geometry
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Differential Geometry required

principal G-bundle
connection and curvature
holonomies
characteristic classes
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Atiyah-Bott, 1893, 1984

The spaceM =MΣ(G) =Mg,d (G) of all connections of a
principal G-bundle over a compact oriented 2d Riemannian
manifold with boundary or not (e.g. Riemann surface) may
be treated as an infinite dimensional symplectic affine
space
gauge transformation group action is a Hamiltonian action
with moment map the curvature!
symplectic quotient is then the moduli space of flat
(integrable) connections
symplectic structure and Poisson structure: Audin p154
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Integrable system onM: Goldman, 1986

Goldman functions onM and its Hamiltonian flow
Poisson commutativity of Goldman functions (Goldman)
counting of independent Goldman functions
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Examples

general surface of genus g with d holes and G = S1 (Audin
p152)
G = SU(2) (Audin Chapter V)
three-holed sphere with G = SU(2) (Audin p153, p167)/
one-holed torus (Audin p159, p167)
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Goldman, Invariant functions on Lie groups and
Hamiltonian flows of surface group representations, Invent.
Math. 85 (1986), 200-225
action-angle coordinates: L. Jeffrey and J. Weitsman, Toric
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Moduli spaceM of flat connections

By holonomy construction,M can be identified with the
space of homomorphisms fromπ1(Σ) to G modulo
conjugation by elements of G (character variety)
the latter space is also identified with a space of
isomorphism classes of holomorphic vector bundles when
Σ is a Riemann surface
all of these spaces have symplectic structures!!
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Hitchin Moduli Space

Hitchin System of Equations (self-duality equations on a
Riemann surface)

FA + [φ, φ∗] = 0; d ′′Aφ = 0

this is a dimensional reduction of the anti-self dual
Yamg-Mills/instanton equations in dimension 4 (origion of
HperKähler structure)
this means that the SU(n)-connection A is compatible with
the holomorphic structure of the bundle E
FA is the curvature of connectionA
d ′′Aφ is the anti-holomo. part of the covariant derivative of φ
differential-geometric flavor system of nonlinear PDEs
Hitchin equations are equivalent to the flatness of an
SL(n,C)-connection A + φ+ φ∗
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WHY Hitchin Moduli Space?

Rich structures
play a role in many different areas including gauge theory,
Kähler and HyperKähler geometry, surface group
representations, integrable systems, nonabelian Hodge
theory, mirror symmetry, geometric Langlands duality
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Hitchin Moduli Space: Equivalent descriptions

Hitchin moduli spaceMH=space of solutions to Hitchin
system of nonlinear PDequations (=moment map for the
action of the gauge group, HyperKähler reduction)
moduli spaceMDol(Σ,n) of stable rank n degree 0 Higgs
bundles (E , φ) on the Riemann surface Σ, here
φ ∈ Γ(End(E)⊗ Ω1(Σ)) is the Higgs field (Hitchin
integrable systems)
moduli spaceMDR(Σ,n) of stable holomorphic
connections on rank n holomorphic vector bundles V → Σ
(isomonodromy systems)
the moduli spaceMB(Σ,n) (i.e.,
Hom(π1(Σ),GLn(C))/GLn(C) of irreducible SL(n,C)
complex representations of the fundamental group π1(Σ)
(character variety, mapping class group actions)
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Hitchin Moduli Space: Equivalent descriptions

Hitchin-Kobayashi correspondence/principle (interpreting
stability conditions for algebro-geometric objects as the
condition for existence of solutions of gauge-theoretic
PDEs) for Higgs bundles (Hitchin, Simpson):

MH
∼=MDol

Nonabelian Hodge theory:

MDol(Σ,n) ∼=MDR(Σ,n)

Riemann-Hilbert correspondence:

MDR(Σ,n) ∼=MB(Σ,n)
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Hitchin Moduli Space: beauties

HyperKähler!
integrable systems!
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Hitchin Moduli Space:References

N. J. Hitchin, The self-duality equations on a Riemann
surface, Proc. London Math. Soc. (3) 55 (1987) 59-126
N. J. Hitchin: self-dual equations on a Riemann surface; φ
Higgs field
C. T. Simpson, Higgs bundles and local systems, Publ.
Math. IHES 75(1992)5-95
C. T. Simpson: nonabelian Hodge theory; (E , φ) Higgs
bundle
A. Kapustin and E. Witten, Eletric-magnetic duality and the
geometric Langlands program, Commun. Number Theory
Phys. 1 (2007), 1-236
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To the world of meromorphic even irregular singular objects

C. Simpson
P. Boalch
D. Gaiotto- G. Moore-A. Neitzke
STOKES!!!
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Term paper

concrete examples of moment map and reduction
integrable systems preferably with singularities!
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