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Symmetry in Symplectic Geometry

@ in symplectic geometry, we study motions in phase space
of classical mechanical systems (i.e., Hamiltonian systems
on symplectic manifolds)

@ Almost all mechanical systems have symmetries which
imply constants of motions (=conservative quantities, i.e.,
first integrals of HS) according to E. Noether

@ Slogan (Yang): Symmetry determines interaction!
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Emmy Noether: Creative Mathematical Genius
(1882-1935)

f“i, Symmetries *
veeZ 4,

imply
'(E
Conservation Laws ¢

x L{z',#) - iz E)=AL=g
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Emmy Noether: Creative Mathematical Genius
(1882-1935)

@ E. Noether, Invariante Variationsprobleme, Nachr. Konig.
Gesell. Wissen. Géttingen, Math.-Phys. KIl. (1918),
235-257

@ Y. Kosmann-Schwarzbach, The Noether Theorems.
Invariance and Conservation Laws in the Twentieth
Century, Springer, New York, 2011 (Including the English
translation of Noether’s classical paper above)
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Classical Examples

Following Noether,

@ space translation invariance =- conservation of linear
momentum
@ time translation invariance = conservation of energy

@ rotational invariance = conservation of angular momentum
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Classical Examples

@ Harmonic Oscillator

@ pendulum (simple(Audin p88, p90, p93), spherical(Audin,
p103) and magnetic spherical)

@ rigid bodies and tops (motions on Lie groups)
@ N-body problem

@ Fixed center problem

@ geodesics
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Classical Examples

Ref: Cushman-Bates, Global Aspects of Classical Integrable
Systems
Some are even integrable systems!!!

@ Harmonic Oscillators

@ pendulums (simple, spherical (da Silva(p178)) and

magnetic spherical)

@ geodesics on S°

@ Kepler problem

@ tops (Euler, Lagrange, Kovalevskaya)

@ two-center problem a la Euler

How good are they?
How to prove nonintegrability? 3BP
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Symmetry in Symplectic Geometry

Other reasons other than the symmetry in mechanics

@ “orbit methods” (Kostant, Kirillov,...) use SG in an essential
way to construct representations. Fundamental objects are
the coadjoint orbits which are naturally symplectic

@ Hamiltonian action = functions on the symplectic
manifolds = play the game of Morse theory in SG
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Symmetry in Symplectic Geometry

@ Geometric and Topological Aspects
@ Dynamical Aspects (stability)
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Group Action on Manifolds

Equivariant Cohomology

Group Action

@ Group: compact Lie groups/algebraic groups/finite
groups/discrete groups, R, S', SO(n), SU(n), Sp(2n) and
their complexification; discrete group

@ Space M: manifold with various additional structures

@ transformation group of the space: Aut(M) (e.g.
Homeo(M), Diff(M), Sym(M, w), Ham(M, w))

@ G group action on M=group homomorphism G — Aut(M)
compatible with additional structures

@ Dynamical Systems: G =R

@ G group action on G itself: left, right, adjoint, coadjoint
actions
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Group Action on Manifolds

Equivariant Cohomology

Group Action

A way to construct new spaces

@ orbit, orbit map and fundamental vector fields

isotropy group/ stabilizer

transitive action

free action, locally free action (isotropy group discrete)

effective action: each group element g # e moves at least
onepeM

@ quotient space=orbit space: topological (Hausdorff?) or
additional properties?

@ slice theorem (equivariant tubular neighborhood theorem)
@ G group action on G: homogeneous space, flag variety
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Group Action on Manifolds

Equivariant Cohomology

Group Actions: Examples

Ref: Audin, p11-12, p18 and exercise(p37)
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Group Action on Manifolds

Equivariant Cohomology

Outline
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: universal principal G-bundle

Ref: Audin (p178)

@ universal: a numerable principal G-bundle & — B is called
universal if (1) for any numerable principal G-bundle
E — B, there exists a map f : B — B such that E is
isomorphic to f*&; (2) two maps f,g : B — B induce
isomorphic bundles iff they are homotopic

@ Milnor Join: Milnor’s beautiful and explicit construction of
universal principal G-bundle EG — BG (Audin p179)

@ EG is contractible and the action of G on EG is free; BG
the classifying space

@ BU(k) = Gk(C*) the infinite Grassmannian
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: Borel Construction

@ Gactson M x EGby g-(x,e) =(g- x,g - e) freely (since
G acts on the second factor freely)

@ Borel construction: Mg := M x5 EG

@ Mg is the homotopy theoretical quotient of M which is good
enough and has the same homotopy type as M/G when
the genuine quotient M/G is "good” ( M/ G is smooth)

@ G-action free, Mg = M/G; G-action trivial, Mg = BG x M,
in particular, we have Mg = BG when M is a point!
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology

@ HE(M) := H*(Mg)

@ Hg(M) is aring, further, it is an H;(pt)-module

@ For G=S', BS' = CP* and H*(BS') is a polynomial ring
on a generator u of degree 2 (Audin, p186)
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: various models

Ref: Guillemin-Sternberg: SUSY and equivariant de Rham
for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory
@ naive guess: Q(M) ® Q(EG) corresponding to M x EG
then take G-invariant part, hard to treat the 2nd factor due
to co-dim.
@ idea(1): introduce Lie supergroup G* whose underlying
manifold is G and underlying algebra is

g:=9-1Dgo D g1

with g_4 generated by ¢x,, go generated by Ly, and g4 by
de Rham differential d. X; fundamental vector field
corresponding to the basis of g
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory
@ idea(2): replace Q(EG) by an commutative graded

superalgebra A equipped with a representationof G* and
such that

e acyclic w.r.t. d (corresponding to EG is contractible)
e 30 c A s.t. 1x,0° = 6% (corresponding to G acting on EG
locally freely)

@ we substitute for Q(M) @ Q(EG) the algebra Q(M) @ A

@ then the complex (2(M) ® A)pasic replaces Q(Mg);
basic=G-invariant+annihilated by ¢x,
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory
to be checked

@ independent of A

@ gives the right answer: the cohomology of the complex
(Q2(M) ® A)pasic is isomorphic to H5(M)
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: various models

for differentiable manifolds M with Lie group G acting on it,
equivariant version of de Rham theory

@ Weil model: introduce Weil algebra W = A(g*) ® S(g*); the
model is H*((Q(M) ® W)basi(:a d)

@ Cartan model: H*((Q(M) ® S(g*))%, dg)

@ They are the SAME!
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Group Action on Manifolds

Equivariant Cohomology

Equivariant Cohomology: SUSY perspective

@ Mathai-Quillen construction of a universal equivariant
Thom form

@ Fermionic/super Fourier transform, Berezin integral

@ V. Mathai and D. Quillen, Superconnections, Thom classes
and equivariant differential forms, Topology 25(1986), no.
1, 85-110

@ J. Kalkman, A BRST model applied to symplectic
geometry, Thesis, Utrecht (1993)
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Group Action on Manifolds

Equivariant Cohomology

Localization Theorem: Torus action

Ref: Audin (p204)

For torus T-action, Forgetting torsion, the H*BT-module H3(M)
looks very much like the free H*BT-module H7(F) with F fixed
points

Theorem

Leti: F — M be the inclusion of fixed points of the action of a
torus T on a manifold M. Then the supports of both the kernel
and cokernel of

"+ Hi(M) — Hi(F)

are included in Uy stapiizer+1 b
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Group Action on Manifolds

Equivariant Cohomology

Localization formula: Torus action

Ref: Audin (p207)

@ If x € H7(M), in a suitable localization,
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Group Action on Manifolds

Equivariant Cohomology

S'-euivariant Cohomology

Ref: da Silva (p229)
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Group Action on Manifolds

Equivariant Cohomology
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Group Action on Manifolds

Equivariant Cohomology

References

@ V. Guillemin, Moment maps and Combinatorial Invariants
of Hamiltonian T"-spaces, PM 122, Birkhaser, Boston,
1994

@ V. Guillemin and S. Sternberg, Supersymmetry and
Equivariant de Rham Theory, with an appendix containing

two reprints by H. Cartan, Mathematics Past and Present,
Springer-Verlag, Berlin, 1999

SUN@CNU Symmetry in SG



Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Outline

9 Symplectic/Hamiltonian Action on Symplectic Manifolds
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Canonical Symplectic Form

Ref: da Silva (p163); Audin (p60); Marsden-Ratiu

@ Lie-Poisson or Kostant-Kirillov-Souriau: for f,g € C>(g*)
and ¢ € g*
{f, 9}(&) := (&, [dfe, dge])
where df; : Teg* = g* — R is identified to an element of g
@ the symplectic form

OJg(X, Y) = <§7 [Xv Y]>
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Hermitian matrices

Ref: da Silva (p156), Audin

@ unitary group U(n) acts on the space of n x n complex
Hermitian matrices
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Outline
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Hamiltonian Group Actions

@ symplectic actions
@ Hamiltonian actions
@ symplectic v.s. Hamiltonian
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Moment Map

@ u:M—g*




Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Canonical Moment Map

@ Lie group G acts on the symplectic manifold G - ¢ for £ € g*

@ the inclusion G- £ C g* is a moment map for the G-action
on its coadjoint orbit G - £

@ this is the factory/motherland for examples of moment map
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Coadjoint Orbits

Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map
Symplectic Reduction

Symplectic Quotient=GIT Quotient

Noether Theorem in the light of moment map

Ref: Audin, p79

Let H be a function on M which is invariant under the G-action.
Thus p is constant on the trajectories of the Hamiltonian vector

field Xy.

write all the classical conservation laws in terms of moment
map!!!
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Examples of Momemt Map

Ref: da Silva (p191)

@ coadjoint orbit of unitary group (Audin, p 76)

@ Complex Grassmannian (Audin, p101)

@ symplectic teardrop (symplectic orbifold, Audin, p101)
@ weighted projective spaces (Audin p102)

@ symplectic cutting due to Lerman: a simple and elegant
construction of new symplectic manifold out of Hamiltonian
S' action and symplectic reduction (Audin p102, p139)
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Existence of Moment Maps

Ref: da Silva (p195)

If H'(g,R) = H?(g,R) = 0, then any symplectic G-action is
Hamiltonian

@ A compact Lie group G is semisimple if g = [g, g]

@ (Whitehead Lemma) Let G be a compact Lie group, then G
is semisimple iff H'(g,R) = H?(g,R) =0

@ So if Gis semisimple, then any symplectic G-action is
Hamiltonian
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map
Symplectic Reduction

Symplectic Quotient=GIT Quotient

Uniqueness of Moment Maps

Ref: da Silva(p196)

For a compact Lie group G, if H'(g, R) = 0, then moment maps
for Hamiltonian G-actions are unique

@ In general, moment maps are unique up to elements of the
dual of the Lie algebra which annihilate the commutator
ideal

@ one extreme: G semisimple: any symplectic action is
Hamiltonian and moment maps are unique

@ another extreme: G commutative: symplectic actions may
not be Hamiltonian, moment maps are unique up to any
constant ¢ € g*
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Outline

9 Symplectic/Hamiltonian Action on Symplectic Manifolds

@ Symplectic Reduction
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map
Symplectic Reduction

Symplectic Quotient=GIT Quotient

Marsden-Weinstein-Meyer Theorem

Ref: da Silva

Theorem (Marsden-Weinstein, Meyer)

Let (M,w, G, 1) be a Hamiltonian G-space for a compact Lie
group G. Leti: u~'(0) < M be the inclusion map. Assume
that G acts freely on ;1~1(0). Then

@ the orbit space M,.; = u~1(0)/G is a smooth manifold
@ 7 : u~1(0) — M,y is a principal G-bundle

@ there is a symplectic form w,., on M,., satisfying
*w = T Wy

(Meed, wrea): reduced space, symplectic quotient,
Marsden-Weinstein-Meyer quotient, symplectic reduction
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Variants

Lagrangian Reduction

tangent and cotangent bundle reduction
semidirect product reduction SE(3) = SO(3) x R3
Routh reduction

reduction by stages and group extensions
singular reduction

multisymplectic reduction

discrete mechanical system motivated by numerical
analysis

@ Kahler (Atiyah) and hyperKahler (Hitchin) reduction



Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Reduction of Dynamics

Ref: da Silva (p173)
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Examples of Reduction

Ref: da Silva (p198)
@ symplectic cuttings
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Very Brief History on Symplectic Reduction

Ref: Marsden-Weinstein, Some comments on the history,
theory and applications of symplectic reduction, 2001
For moment map

@ S. Lie: (1) an action of a Lie group G with Lie algebra g on
a symplectic manifold M should be accompained by a map
u: M — g* equivariant w.r.t. the coadjoint action (2)the
orbits are symplectic

@ In old days, links with mechaniccal system with
symmetries: Euler, Lagrange, Hamilton, Poisson, Jacobi,
Routh, Riemann, Liouville, Lie, Poincaré, Noether.

@ moment map and its equivariance in modern form: Kostant
(1966), Souriau (1966, 1970) in the general symplectic
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction
Symplectic Quotient=GIT Quotient

Very Brief History on Symplectic Reduction

For moment map

@ S. Smale, Topology and mechanics, Invent. Math.
10(1970), 305-331; 11(1970), 45-64 (apply topology,
especially Morse theory, to study relative equilibria; lifted
action from a manifold N to its cotangent bundle T*N)

@ about terminology: Smale (angular momentum); Souriau
(application moment); Marsden-Weinstein (moment);
Duistermaat-Cushman (momentum),
Marsden-Weinstein/Abraham-Marsden (since 1976,
momentum map/mapping); Guillemin-Sternberg (moment
map/mapping)

@ more history on moment map: Marsden-Ratiu (Introduction
to mechanics and symmetry, 1999)
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map
Symplectic Reduction

Symplectic Quotient=GIT Quotient

Very Brief History on Symplectic Reduction

Ref: Marsden-Weinstein, Some comments on the history,
theory and applications of symplectic reduction, 2001
For symplectic reduction
@ For G abelian, there are many precursors: Lagrange,
Poisson, Jacobi, Routh
@ Smale’s observation: Jacobi’s "elimination of the node” in
SO(3) symmetric problems is best understood as the
division of a nonzero angular momentum level by the
SO(2) subgroup that fixes the momentum value
@ For cotangent bundle: Smale clearly stated that coadjoint
isotropy group Gy of k € g* leaves u~'(k) invariant, but he
only divided by G after fixing the total energy as well, in
order to obtain the "minimal” manifold on which to analyze
the reduced dynamics
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map
Symplectic Reduction

Symplectic Quotient=GIT Quotient

Very Brief History on Symplectic Reduction

For symplectic reduction

@ Marsden-Weinstein (1974): combine Souriau’s momentum
map for general symplectic actions, Smale’s idea of
dividing the momentum level by the coadjoint isotropy
group, and Cartan’s idea of removing the degeneracy of a
2-form by passing to the leaf space of the form’s null
foliation

@ Meyer (1973) and Marsden-Weinstein (1974): the key
observation was that the leaves of the null foliation are
precisely the (connected components of the) orbits of the
coadjoint isotropy group

@ Marsden-Weinstein (1974): construction of the coadjoint
orbits in g* by reduction of the cotangent bundle T*G with
its canonical symplectic structure
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ For masters like Euler, Lagrange..., their aim was to
eliminate variables associated with symmetries in order to
simplify calculations in concrete examples and much of
these works were done with coordinate (Ref: Whittaker,
1907)
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ Routh (1860, 1884): reduction of systems with cyclic
variables; Jacobi and Liouville (1870): reduction of
systems with integrals in involution; modern Lagrangian
reduction for the action of abelian groups

@ Rigid body: Euler got the equiation aroud 1740; key
example of coadjoint orbit reduction/ Euler-Poincaré
reduction; Lagrange (1788) understood reduction as we do
for SO(3) today;
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ Jacobi’s elimination of node for reducing the gravitational
NBP by group SE(3) of Euclidean motions around 1860

@ it is related to work on rotating fluid masses held together
by gravitation forces (star soup!) studied by Riemann,
Jacobi, Poincareé,....

@ Hidden in these examples is much of the beauty of modern
reduction, stability and bifurcation theory for mechanical
system with symmetries
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ both symplectic and Poisson geometry have their roots in
the works of Lagrange, Jacobi and Poisson

@ they matured at the hands of Lie, and he discovered many
modern concepts, e.g., Lie-Poisson bracket ong*

@ How is it possible? Mystery!
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ notion of manifold: Lie, Poincaé, Weyl, Cartan, Reeb,

@ it is time for a more general and intrinsic view of mechanics
around 1960s
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ From 1960s, geometric mechanics exploded: Abraham,
Arnold, Kirillov, Kostant, Mackey, MacLane, Segal,
Sternberg, Smale, Souriau

@ Kirillov and Kostant: deep connections between mechanics
and pure math (orbit methods in group representations)

@ Arnold and Smale were closer to mechanics
@ Souriau: more in mathematical physics
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ modern vision of mechanics combines strong links to
important questions in pure math with traditional classical
mechanics of particles, rigid bodies, fields, fluids,
plasmas......

@ symmetries vary from obvious translational and rotational
symmetries to less obvious particle relabeling symmetries
in fluids, to the "hidden” symmetries underlying integrable
systems
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Know past, know future

@ Arnold (1966) focused on systems whose configuration
space is a Lie group (e.g. rigid body and fluid as did by
Poincaré)

@ Samle (1970) focused on bifurcations of relative equilibria
(number and stability of relative equilibria in planar NBP by
a topological study of the energy-momentum mapping)

@ these paved the way for Meyer and Marsden-Weinstein
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Outline

9 Symplectic/Hamiltonian Action on Symplectic Manifolds

@ Symplectic quotient=GIT Quotient
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Motivating Example

Ref: da Silva, Audin (p84)
@ G=C\{0} actson M =C":

Vv (C\{0})xC" — C"
(N2) = A-z=V,(2)

@ orbits: through nonzero z € C”, it is the punctured complex
line C\{0}; through 0 € C", it is just a single point which is
"unstable”

e the orbit space is M/G = CP"~" LI {point}

@ the quotient topology restricts to the usual topology on
CP"'; the only open set containing {point} in the quotient
topology is the full space. The quotient topology in M/G is
NOT Hausdorff!!
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Motivating Example

@ it suffices to remove 0 from C" to obtain a Hausdorff orbit
space: CP"' (GIT quotient)

@ it is well known that CP"~! has a COMPACT (but NOT
COMPLEX) description

CP"' = (C"\{0})/(C\{0}) = &*"""/S'

@ the last step is in fact a symplectic quotient!
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Motivating Example

@ the standard symplectic structure on C” is

w— éZdzi/\dZ;: > dxi Ady; =) ridr A db;
@ consider the S' group action 1 on (C”,w)
p:S8'xC" - C"
(t=e%2) — t-z
@ the action ¢ is Hamiltonian action with moment map
p:C" — R

|2[?

Z +— ——— + cost.
> +
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Motivating Example

@ This is because

Lxtw = —Zf/df/ = —%Zdrz = du

- _ 8 . 0 0
with X# = 20 + 2- + - o5

@ choose constant to be 3, then ~1(0) = S2"~', and the
orbit space of the zero level set of the moment map is

Mf1 (O)/S1 — 82n71/S1 — CPnf1

@ we realize the GIT quotient CP"~' as a symplectic
quotient/reduced space!
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient

Motivating Example

three major themes for Hamiltonian torus action
@ (Marsden-Weinstein-Meyer) the reduced spaces are
symplectic manifolds (whence the symplectic quotient)

@ (Atiyah-Guillemin-Sternberg) the image of the moment
map is a convex polytope

@ (Delzant) Hamiltonian T" spaces are classified by the
image of the moment map
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Coadjoint Orbits
Symplectic/Hamiltonian Action on Symplectic Manifolds Moment Map

Symplectic Reduction

Symplectic Quotient=GIT Quotient
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Duistermaat-Heckman

Convexity theorem

Ref: da Silva (p199)

Theorem (Atiyah, Guillemin-Sternberg)

Let (M,w) be a compact symplectic manifold, and
G=T™=R"/Z" be an m-torus. Suppose that

¥ T — Symp(M,w) is a Hamiltonian action with moment
map v : M —]R™. Then

@ The levels of . are connected

@ The image of i is convex

@ The image of . is the convex hull of the images of the fixed
points of the action

The image p(M) of the moment map is called moment polytope

SUN@CNU Symmetry in SG



Convexity Theorem

Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Refinement

@ Atiyah: Kahler version
@ Hitchin et al: HyperKahler version
@ noncommutative convexity theorem due to Kirwan
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Convexity Theorem

Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Examples

Ref: da Silva (p202), Audin (p137)

@ torus action on (weighted) projective spaces

@ Hirzebruch surfaces (Audin p137, p145)

@ Blowing-up the projective space (Audin p138)

@ torus action on the Hermitian matrices (Audin p141)
@ Permutahedron (Audin, p142)
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Convexity Theorem

Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Applications

@ Kushnirenko theorem about the enumeration of solutions
to a particular system of algebraic equations (Audin, p4,
p129)

@ Toeplitz-Hausdorff theorem about the numerical image of
an operator on a Hilbert space (Audin, p5, p113)

@ Schur-Horn theorem about the possible values of the
diagonal entries in a Hermitian matrix of a given spectrum
(Audin, p6, p117)

@ compact symplectic SU(2)-manifolds of dim. 4 due to
Iglesias (Audin, p131)
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Outline

Q Torus Actions

@ Completely Integrable Hamiltonian Systems
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Convexity Theorem
Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Completely Integrable Hamiltonian System (CIHS)

@ A CIHS is a collection of nindependent (over an open
dense subset) Poisson commuting functions defined over a
symplectic manifold M?"

@ Mineur-Arnold-Liouville theorem: locally, near a compact
connected component of a regular level of an CIHS, there
is @ Hamiltonian torus action

@ action-angle coordinates (only defined locally in general.
e.g., there are NO GLOBAL action-angle coordinates for
spherical pendulum (Audin, p103))
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Convexity Theorem
Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

CIHS v.s. Torus Action

Duistermaat-Heckman

@ the moment map of an effective Hamiltonian torus action
on a symplectic manifold of the right dimension is an CIHS

@ On the other hand, there are many CIHS that do not come
from integrable torus action, e.g. any nonconstant function
on a surface is a CIHS

SUN@CNU Symmetry in SG



Convexity Theorem

Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds
Duistermaat-Heckman

Pelayo-Vu Ngoc, semitoric IS, 2007-2011

@ we focus on (M*,w) compact connected symplectic
manifold

@ the momentum map F = (f;, ) € C>(M, R?) gives a
CIHS on M: (1) {fi, b} = 0; (2) X, X;, linearly
independent almost everywhere

@ Def: CIHS F = (f;, &) is toric if the flows of X; and X;, are
2m-periodic and the action

T2 % M = M, ((tr ), %) = (1) 0 62)(x))

is effective

@ According to Atiyah and Guillemin-Sternberg:
P = F(M) c R2 is convex
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

Singularities of CIHS
@ points where X, X;, are linearly dependent
@ Eliasson: notion of nondegenerate singularity = normal
form
@ Jlocal coordinates (x1, X2, &1, £2) such that
w=dxy Ad& + dxo A déo and (fy, ) ~ (g1, q2) Where g;
are some of
gi = & (regular component)
gi = % (elliptic component)

gi = x;& (hyperbolic component)
g1 = X1&2 — X2&1, Qo = Xx1&1 + x2&2 (focus-focus component)

SUN@CNU Symmetry in SG



Convexity Theorem
Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Pelayo-Vu Ngoc, semitoric IS, 2007-2011

focus-focus singularity
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

@ Def: Semitoric system: a CIHS F = (J, H) : (M*,w) — R?
is semitoric if
e Jis proper
e the Hamiltonian flow of J yields an effective S'-action
e F has non-degenerate singularities only (like toric) with no
hyperbolic component (these create problems, e.g.,
disconnected fibers)
@ compared with toric case, focus-focus singularities appear
@ for a semitoric system, F(M) need NOT be a convex

polygon
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

An Example: Spin-Oscillator

@ phase space (M,w) = S(zx,y,z) = R%u,v)’

2 2
@ F=(J,H):J="252 1 7and H = ¥4%

P
T

w=wg2 O wr2
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

Another: Coupled angular momenta (Sadovki-Zhilinskii, 1999)

O (M.w) = (S0, 4, 21) X S(p yo.2) Frwse @ Rewse),
Ri,Ro >0, X = X1X2 + Y1)

@ J=Rizi + Rozo and H; = (1 = t)Z1 aF t(X+Z122)

t=0 t=0.25 t=05 t=0.75 t=1
9] > 10— 0 10f _—p ———te——
/ 05 0| 5] /  «— 08 / \ o5 /
/ L] / | / /
iy cps Evosrm I, e B3 3Na T A s 3%s
3/ 2 -1 5[ 128y 72;&5" 1/,2 3 -3<2 —“D‘Sk w/z 3 3 Az\‘iﬁ‘l 1/,2 3 3Rt /2 3
¢ —tob o o ~1.00~ -1.08—¢ of o

Figure: The momentum map image for varying values of t and Ry =1, R, = 2.
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

@ (M,w, F)and (M, ., F") semitoric are isomorphic <
d¢ : M — M’ symplectomorphism and

ag(z)

,W>0

g: F(M) — F'(M'),g(x,y) = (x,gd®(x,y))

suchthat FFogp=goF
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Pelayo-Vu Ngoc, semitoric IS, 2007-2011

Theorem (Pelayo-Vu Ngoc)
Semitoric systems are classified up to isomorphism through
five invariants

@ the number my of focus-focus singula points

@ a family of convex polygons obtained from F(M)

@ the heights of the images of focus-focus points in these

polygons
@ a formal series for each focus-focus point

@ an integer for each focus-focus point (twisting index)
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Toric Manifolds/Toric Varieties

Ref: Audin, VII §1

@ Toric varieties were introduced by Demazure as closures of
complex torus orbits in algebraic varieties

@ For us, they are very beautiful families of symplectic
manifolds endowed with Hamiltonian TORUS actions (even
half-dimension). In fact, according to Delzant, they are the
compact symplectic manifolds endowed with completely
integrable torus actions!!!

@ They play important roles in combinatorics (hence
everything is explicit! polyhedron and fans), algebraic
geometry, complex geometry, symplectic geometry,
mathematical physics (string theory (Gromov-Witten on
toric Calabi-Yau,...), gauge theory (gauged linear sigma
model...))

SUN@CNU Symmetry in SG



Convexity Theorem
Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds
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Symplectic Reduction and Convex Polyhedron

@ Construction of toric manifold Xs: convex polyhedron P =
Fan £ (P) = toric manifold Xs

@ Conversely, we can associate a polyhedron to a toric
manifold: Following Delzant, Xy can be endowed with
symplectic forms for which the action of the compact torus
is completely integrable and the image of the moment map
is one of the convex polyhedra leading toe fan *X——the
shape of the polyhedron determines the fan and the
volumes of its faces then determine the symplectic form

@ Fact: All the primitive polyhedra are indeed images of
moment map of completely integrable torus actions (This,
together with the uniqueness theorem, constitute the
classification theorem of Delzant, See Audin, Thm
VIl.2.1(p 245) with motivating example p244)
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Compact Complex Toric Surfaces

Theorem (Oda)

Any compact complex toric surface is obtained from CP? or
from a Hirzebruch surface by a finite sequence of blow ups
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Symplectic Toric Manifold

@ A 2n-dim Symplectic toric manifold is a compact connected
symplectic manifold (M?2", w) equipped with an effective
Hamiltonian action of an n-torus T" with the corresponding
moment map p : M — R"
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Delzant Polytopes

Ref: da Silva, Audin
A Delzant polytope A C R" is a convex polytope such that
@ itis simple: there are n edges meeting at each vertex
@ it is rational: the edges meeting at the vertex p are rational
in the sense that each edge is of the form
p+tut>0uecZ
@ it is smooth: for each vertex, the corresponding uy, ..., U
can be chosen to be a Z-basis of 2"
Note: it is closely related to Newton polytopes (which are the
nonsingular n-valent polytopes), except that the vertices of a
Newton polytope are required to lie on the integer lattice and for
a Delzant polytope they are not

SUN@CNU Symmetry in SG



Convexity Theorem

Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds

Duistermaat-Heckman

Delzant Theorem

classification theorem for symplectic toric manifold in terms of
combinatorial data.

Theorem (Delzant)

Symplectic toric manifolds are classified by Delzant polytopes.
More precisely, there is a one-to-one correspondence

{toric manifolds} =1 {Delzant polytopes}
(MP"w, T ) = (M)
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Duistermaat-Heckman Polynomial

Ref: da Silva (p223)
@ (M,w, G, 1) Hamiltonian G-space with G torus and
proper
@ Liouville/symplectic measure

wn

my,(U) = L )
for Borel subset ¢/ of M

@ Duistermaat-Heckman measure, mpy on g* is the
pushforward of m,, by u: M — g*, i.e.,

mon(V) = (emW) = [ &

for Borel subset U C g*
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Duistermaat-Heckman Polynomial

@ for a compactly-supported function h € C3°(g*), its integral
w.r.t. mpy is defined to be

wn
/ hdmpy, 32/(hoﬂ)

@ regard g* as a vector space R”, there is also the Lebesgue
measure mg

@ the relation between mpy and mg is governed by the
Radon-Nikodym derivative ¢ am 0 WhICh is a generalized
function s.t.

/hdeH—/ hdeHd Mo
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Group Action on Manifolds Convexity Theorem
Symplectic/Hamiltonian Action on Symplectic Manifolds Completely Integrable Hamiltonian Systems
Torus Actions Toric Manifolds
Moduli Spaces in Gauge Theory Duistermaat-Heckman

Duistermaat-Heckman Polynomial

Theorem (Duistermaat-Heckman,1982)

The Duistermaat-Heckman measure is a piecewise polynomial
multiple of Lebesgue measure mg on g ~ R", that is the
Radon-Nikodym derivative f = ddm—ng’oH is piecewise polynomial.
More precisely, for any Borel subset U of g*,

mou(U) = /U F(x)dx

where dx = dmy is the Lebesgue volume form on U and
f:g* ~ R" — R is polynomial on any region consisting of
regular values of .
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Duistermaat-Heckman Polynomial

@ the Radon-Nikodym derivative f is called the
Duistermaat-Heckman polynomial

@ For toric, the Duistermaat-Heckman polynomial is a
universal constant equal to (27)"” when the polytope A is
n-dimensional

@ So the symplectic volume (Ma,wa) (Delzant construction)
is (2m)" times the Euclidean volume of Delzant polytope A
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Variation of Symplectic Volume

A natural question about the symplectic reduction

@ (M,w, G, 1) Hamiltonian G-space with G an n-torus (could
be general G, see Guillemin, PM 122) and . proper: we
take G = S’ for simplicity

@ Suppose that G acts freely on 1 ~1(0), it also acts freely on
nearby levels u—1(t) fort € g*,t =~ 0

@ consider the reduced spaces M,.s = 1~ '(0)/G and
M; = 1~ '(t)/ G with reduced symplectic forms weq and w;

@ What is the relation between these reduced spaces as
symplectic manifolds?
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Variation of Symplectic Volume

Theorem (Duistermaat-Heckman,1982)

The cohomology class of the reduced symplectic form [wy]
varies linearly in t. More specifically,

[wi] = [wred] = tC

where ¢ € H3, rum(Miyea) is the first Chern class of the
S'-bundle Z — M.y

In general, once t; and f lies in the same component of regular
values of the moment map, the difference of cohomology
classes [wy,] — [ws,] is a linear function of t; —

Example: Audin (p 192)
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Variation of Symplectic Volume

@ (M,w, S, 1) Hamiltonian S'-space of dim. 2n and (My, wx)
be its reduced space at level x
@ for x ~ 0, the symplectic volume of My

. W)?_1 . (Wre _X/B)n71
V"I(MX)_/MX (n— 1)1 _/Mmd (dn—1)!

a polynomial in x of degree n — 1
@ in another way

* Wred — n—1
Vol(MX):/Z ((;_fﬁ) na

« a chosen connection from the S'-bundle Z — M.q, S its
curvature form
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Duistermaat-Heckman v.s. Equivariant Cohomology

@ Berline-Vergne: the language of equivanriant cohomology
fits very well with the study of Hamiltonian actions, since
the existence of a moment map for the Hamiltonian
G-action on the symplectic manifold M is equivalent to the
existence of an extension of the symplectic form to the
Borel construction Mg on M

@ this is a perfect example of a theorem which becomes
practically tautological once the right language to state it is
found!
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Duistermaat-Heckman v.s. Equivariant Cohomology

Ref: Audin, p189

Theorem

Let (M,w) be a symplectic manifold endowed with a symplectic
action of the Lie group G. Let u : M — g* be any differentiable
map. The formula

wh = w + d{, u)

defines a closed 2-form on the Borel construction Mg iff the
G-action is Hamiltonian with moment map

Here 0 ® 1 is a 1-form valued in g ® g*, and may be contracted
to give a 1-form valued in R which we denote (0, )
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Duistermaat-Heckman v.s. Equivariant Cohomology

periodic Hamiltonian satisfies the "Exact Stationary Phase
Formula”

Theorem (Duistermaat-Heckman, 1982)

Let (M,w) be a symplectic manifold of dim. 2n and let H be a
periodic Hamiltonian on M with only isolated fixed points. Then

/ e—HULAn _ Z e 12
M nl est(vz)

ZeF

@ isolatedness can be relaxed

@ circle action can be replaced by torus action

@ this is an equality of formal power series in the variable u
and v~

@ polynomial theorem is a corollary (Audin; p209
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Moduli Spaces in Gauge Theory

Moduli Spaces are the Spaces of the Future!

@ Riemann, Mumford, Deligne, Griffths, Kodaira-Spencer

@ moduli spaces appearing in gauge theory and string
theory(moduli space of various connections, various
bundles, pseudo-holomorphic curves): Witten, Donadson,
Nahm, Hitchin, Ruan, Gromov-Witten, Floer,
Fukaya.....(TQFT)

@ derived shifted Poisson/Symplectic geometry
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Moduli Spaces in Gauge Theory

Differential Geometry required

@ principal G-bundle

@ connection and curvature
@ holonomies

@ characteristic classes
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Moduli Spaces in Gauge Theory

Atiyah-Bott, 1893, 1984

@ The space M = M5 (G) = My 4(G) of all connections of a
principal G-bundle over a compact oriented 2d Riemannian
manifold with boundary or not (e.g. Riemann surface) may
be treated as an infinite dimensional symplectic affine
space

@ gauge transformation group action is a Hamiltonian action
with moment map the curvature!

@ symplectic quotient is then the moduli space of flat
(integrable) connections

@ symplectic structure and Poisson structure: Audin p154
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Moduli Spaces in Gauge Theory

Integrable system on M: Goldman, 1986

@ Goldman functions on M and its Hamiltonian flow
@ Poisson commutativity of Goldman functions (Goldman)
@ counting of independent Goldman functions
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Moduli Spaces in Gauge Theory

Examples

@ general surface of genus g with d holes and G = S' (Audin
p152)

@ G = SU(2) (Audin Chapter V)

@ three-holed sphere with G = SU(2) (Audin p153, p167)/
one-holed torus (Audin p159, p167)
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Moduli Spaces in Gauge Theory

Moduli space M of flat connections

@ By holonomy construction, M can be identified with the
space of homomorphisms fromr(X) to G modulo
conjugation by elements of G (character variety)

@ the latter space is also identified with a space of
isomorphism classes of holomorphic vector bundles when
¥ is a Riemann surface

@ all of these spaces have symplectic structures!!
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space

@ Hitchin System of Equations (self-duality equations on a
Riemann surface)

Fa+ (6,61 =0; djg=0

@ this is a dimensional reduction of the anti-self dual
Yamg-Mills/instanton equations in dimension 4 (origion of
HperKahler structure)

@ this means that the SU(n)-connection A is compatible with
the holomorphic structure of the bundle E

@ F,is the curvature of connectionA

@ dj¢ is the anti-holomo. part of the covariant derivative of ¢

@ differential-geometric flavor system of nonlinear PDEs

@ Hitchin equations are equivalent to the flatness of an
SL(n,C)-connection A+ ¢ + ¢*
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space?

@ Rich structures

@ play a role in many different areas including gauge theory,
Kéahler and HyperKahler geometry, surface group
representations, integrable systems, nonabelian Hodge
theory, mirror symmetry, geometric Langlands duality
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space: Equivalent descriptions

@ Hitchin moduli space M y=space of solutions to Hitchin
system of nonlinear PDequations (=moment map for the
action of the gauge group, HyperKahler reduction)

@ moduli space M p, (%, n) of stable rank n degree 0 Higgs
bundles (E, ¢) on the Riemann surface ¥, here
¢ € T(End(E) ® Q'(X)) is the Higgs field (Hitchin
integrable systems)

@ moduli space M pg(X, n) of stable holomorphic
connections on rank n holomorphic vector bundles V — ¥
(isomonodromy systems)

@ the moduli space Mg(Xx, n) (i.e.,

Hom(7(X), GLn(C))/GLn(C) of irreducible SL(n, C)
complex representations of the fundamental group 71 (X)
(character variety, mapping class group actions)
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space: Equivalent descriptions

@ Hitchin-Kobayashi correspondence/principle (interpreting
stability conditions for algebro-geometric objects as the
condition for existence of solutions of gauge-theoretic
PDEs) for Higgs bundles (Hitchin, Simpson):

Mp = Mpo
@ Nonabelian Hodge theory:
Mpol(X, n) = Mpr(x, n)
@ Riemann-Hilbert correspondence:

MDR(Za n) = MB(Z7 n)
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space: beauties

@ HyperKahler!
@ integrable systems!
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space:References

@ N. J. Hitchin, The self-duality equations on a Riemann
surface, Proc. London Math. Soc. (3) 55 (1987) 59-126

@ N. J. Hitchin: self-dual equations on a Riemann surface; ¢
Higgs field

@ C. T. Simpson, Higgs bundles and local systems, Publ.
Math. IHES 75(1992)5-95

@ C. T. Simpson: nonabelian Hodge theory; (E, ¢) Higgs
bundle

@ A. Kapustin and E. Witten, Eletric-magnetic duality and the
geometric Langlands program, Commun. Number Theory
Phys. 1 (2007), 1-236
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Moduli Spaces in Gauge Theory

Hitchin Moduli Space:References

To the world of meromorphic even irregular singular objects

@ C. Simpson

@ P. Boalch

@ D. Gaiotto- G. Moore-A. Neitzke
@ STOKES!!

SUN@CNU Symmetry in SG



Moduli Spaces in Gauge Theory

Term paper

@ concrete examples of moment map and reduction
@ integrable systems preferably with singularities!
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