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In our previously courses, we know that in the case of Hamiltonian S1 actions on a connected compact symplectic
manifold M1, the critical points of the moment map µ : M −→ R ∼= (s1)∗ are exactly the fixed points of the action,
in the case of the torus action T × M −→ M, we wish to construct a single function f , such that the critical points
of which are the fixed points of this torus action, so that we can use the Morse theory to study the action.

It is not difficult to find such a function, we can choose a vector X ∈ t, such that the one parameter subgroup
H = {exp tX : t ∈ R} is dense in T2,then we consider the composition

M
µ−→ t∗

i∗−→ h∗ ∼= R

f (x) = ⟨µ(x), X⟩ = µX(x)
3 Then, by the construction, this function f has the critical points as the fixed points of the torus action.

With a further observation, the associated Hamiltonian vector field X f (x) = X(x), which is exactly the fundamental
vector field of X ∈ t, the flow of X f is equivalent to the flow of X on that torus T, thus the closure of the one parameter
group

L =
{

ϕt
X f

: t ∈ R
}

is diffeomorphic to the torus T as the subgroup of Diff(M). Such functions will later be called the almost periodic
Hamiltonians.

1 Almost Periodic Hamiltonians
From our previously lectures, we defined the periodic Hamiltonians4, which is a function H : M −→ R such that
for every p ∈ H−1(x), the associated Hamiltonian vector field XH at p lies in the tangent space of the level set H−1(x),
i.e. XH(p) ∈ Tp(H−1(x)), for all H(p) = x.

Definition 1. A function H : M −→ R is said to be an almost periodic Hamiltonian, if the closure of the
subgroup:

L = {ϕt : M −→ M|t ∈ R} ⊂ Diff(M)

is a torus, where ϕt5 is the flow induced by the Hamiltonian vector field XH associated to H.

We recall that the one-parameter group
{

ϕt
X : t ∈ R

}
generated by the flow of any vector field X is a connected

Abelian group6, thus the only assumption here is to assume that L is a compact one.
Note that the flow of a periodic hamiltonian vector field is equivalent to an S1 action, hence we have:

Proposition 1. A periodic Hamiltonian is an almost periodic Hamiltonian.

Although the almost periodicity is the generalization of the periodicity, but the assumption is not mild, it may
have a difference between H and its H2.

Example: Consider R2 with the usual symplectic form ω = dp ∧ dq, let

H =
1
2

(
p2 + q2

)
: R2 −→ R

1In this lecture, we assume M is a compact connected symplectic manifold. If without additional explanations, all symplectic
manifolds will be connected and compact.

2This is not hard to make it, for example, T2 = S1 × S1, we choose X ∈ R2 ∼= t2, such that the slope of X is irrational, then its flow line
is dense in T2.

3Is is right in this case the pairing ⟨µ(x), X⟩ is the inner product?
4Why would we call it periodic? Does it have some relations with the periodicity of an ODE system? Yes, the Hamiltonian vector

field XH will define an ODE system, that is
γ′(t) = XH ◦ γ(t)

H is periodic implies that system has periodic solutions, that is because a solution of which is closed 1-dimensional submanifold, notice
that XH(p) ∈ Tp(H−1(x)) implies the trajectories of which are lying in H−1(x), which is a compact submanifold, thus the solution line of
which is a compact 1-dimensional manifold, that is S1, which is exactly a periodic solution.

5Here we use ϕt
X to express a flow induced by a vector field X, and exp tX for the trajectory of X, obviously, the flow ϕt acts by moving

a point p ∈ M along the trajectory, which passed through p at the origin, t−times after.
6As for the commutativity, moving a point p ∈ M along the trajectory by s−times first and t− times after is equivalent to by moving

t−times first and s−times after, which are equivalent to by moving (s + t)−times, as for the connectedness, it is easy to find a path which
connects any two flows, namely ϕ

t1
X , ϕ

t2
X , via

γ(s) = ϕ
st1+(1−s)t2
X

thanks to the compactness of M.
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the associated Hamiltonian vector field XH is by sending z ∈ R to the tangent vector of the circle at z which centered
at the origin, it is obviously periodic hence almost periodic, consider its square H2, it is not hard to find the flow of
XH2 is

ϕt
XH2

(z) = ei|z|2t.z

however, the closure of which is not a compact one. Indeed, we denoted by

L =
{

ϕt
XH2

: z → ei|z|2t.z|t ∈ R
}

Recall that the topology on Diff(R2) is compact-open topology, thus the evaluation map

ψ : L × R2 −→ R2

is continuous. Now, if L is compact, choose z ∈ R2 so that |z|2 ∈ R \ Q, its image under ψ is also compact, since R2

is metric space, thus the image will be sequential compact, choose a sequence {ei|z|2nt.z}n>0, thus any subsequence of
which is a dense subset of S1 hence not convergent, a desired contradiction. �

By a simple observation, we have :

Proposition 2. Any almost periodic Hamiltonian H is a paring of the moment map of a torus action, i.e. there
exists a torus action T × M −→ M, and a vector X ∈ t, such that H(x) = ⟨µ(x), X⟩, where µ is the moment map.
Hence then the zeros of XH will be the fixed points of that T action.

Actually, this torus is L̄ with the usual action, that T will be called the torus generated by H.
Example: For the case of the torus action on CPn:

Tn =
{
(t0, ..., tn) ∈ Tn+1|t0...tn = 1

}
via

(t0, ..., tn).[z0, ..., zn] 7→ [t0z0, ..., tnzn]

As we have computed before, this is a Hamiltonian action with the moment map

µ([z0, ..., zn]) =
1
2

(
|z0|

∑n
i=0 |zi|2

, ...,
|zn|

∑n
i=0 |zi|2

)
Now if we fix some proper real numbers a0, ..., an, we will have an almost periodic Hamiltonian:

H([z0, ..., zn]) =
1
2

∑n
i=0 ai|zi|2

∑n
i=0 |zi|2

As we have proven in the Morse theory, this function is a Morse function of CPn, with critical point [0, ..., 1, ..., 0],
which are exactly the fixed points of that torus action.

2 Second Derivative of H
Let H be an almost periodic Hamiltonian, and T the torus generated by H, we denoted by Z the zeros of XH, which
are the fixed points of this T action, recall that

T = {exp tXH |t ∈ R}

For any s ∈ T, and any z ∈ Z, s induces an isomorphism of the tangent space:

(ds)z : Tz M −→ Tz M

Note that there is an almost complex structure J calibrated with the symplectic form ω on Tz M, thus has an Hermitian
form on Tz M, since the torus action is Hamiltonian, it preserves the Hermitian structure, hence the torus T can be
regarded as the subgroup of U(n), thus its Lie algebra t ⊂ u(n), since T is Abelian, thus all elements can be
simultaneously diagonalized, i.e. they have common eigenvectors, moreover, since T fixes Z, thus TzZ is spanned by
the eigenvectors subordinate to the eigenvalue 1, thus we can write

Tz M =
k⊕

i=0

Vi

where V0 = TzZ, and the rests Vi are complex 1-dimensional.
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We suppose v1
0, ..., vr

0, v1, ..., vk is a basis of Tz M, now let’s see how exp XH acts on these decomposition. Recall that
the eigenvalues of an unitary matrix are unimodulars, thus (exp XH)vj = eiλj vj for j = 1, ..., k, and (exp XH)vi

0 = vi
0,

thus the matrix of XH is 
Or×r

iλ1
. . .

iλk


we recall that t has an infinitesimal version of the torus action on Tz M by

XH(v) = XH(v) =
d(d exp tXH)zv

dt

∣∣∣∣
t=0

=
d
dt

∣∣∣∣
t=0

(
d(exp tXH)γ(s)

ds

∣∣∣∣
s=0

)
= ∇XH γ′(0)

where γ(0) = z and γ′(0) = v, and ∇ is the Levi-Civita connection of the ω−tamed Riemann metric, hence the
matrix of XH is the matrix of the linear transformation

∇XH : Tz M −→ Tz M

Also recall that the Hessian of H at point z under this basis is the bilinear form:

(∇2H)z : Tz M × Tz M −→ R

the matrix of which is the matrix of the linear transformation

∇gradH = −J∇XH : Tz M −→ Tz M

hence which is 
Or×r

λ1
. . .

λk


thus the Hessian is the quadratic form

k

∑
i=1

λi|vi|2

So now, we can define what is the Morse function.

Definition 2 (Morse function in the sense of Bott). A function f : M −→ R is a Morse function if
1). The critical points of which is a submanifold.
2). The Hessian of f at any critical points is non-degenerate along the transverse direction.

As we can see, for an almost periodic Hamiltonian H it is a Morse function, and thanks to the complex vectors,
the index of any critical points must be even.

Theorem 1 (Frankel). The almost periodic Hamiltonian function is a Morse function, and all the critical points are
of even index.
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