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ABSTRACT

Let
SU(2) =

{(
x −ȳ
y x̄

)∣∣∣∣ |x|2 + |y|2 = 1
}

∼= S3

be the Lie subgroup of GL2(C), with the Lie algebra:

su(2) =
{(

ia b + ic
−b + ic −ia

)∣∣∣∣ (a, b, c) ∈ R3
}

∼= R3

this can be identified with its dual Lie algebra su(2)∗ via

su(2)
∼=−→ su(2)∗

A 7→
(

X 7→ i
2

tr(A∗X)

)
In this lecture, we will give the classifications of all connected compact symplectic 4-manifolds endowed with

an effective SU(2)-Hamiltonian action, the main theorem is as follows:
Theorem 1. If M is a connected compact symplectic 4-manifolds endowed with an effective SU(2)-Hamiltonian
action, then M is either P2 or the Hirzebruch surface Wm with some m odd.

1 Examples
1.1 SU(2)-action on P2

We define the SU(2) action on the complex projective space P2 by

A.[x, y, z] :=
[
(x, y, z)

(
A

1

)]
This the restriction action of the standard GL3(C) action on P2, hence is Hamiltonian, with [0, 0, 1] as the fixed
point.

The moment mapping can be computed as follows:
consider the inclusion

i : SU(2) ↩→ GL3(C)

A 7→
(

A
1

)
consider its differential mapping at I:

(di)I : su(2) −→ gl3(C)

X 7→
(

X
0

)
then try to compute the moment mapping µ′ : C3 −→ gl3(C)∗ associated with the standard GL3(C) action on
C3, which is

µ′(v) =
(

X 7→ i
2 ∥ v ∥2 v∗Xv

)
Then by taking the composition and descending it to the P2 level :

..
..C3 ..gl3(C) ..su(2)∗

..P2 . .

.

µ′

.π .

(di)∗I

.µ

and that µ is by my computation:

µ([v]) =
(

Y 7→ i
2 ∥ v ∥2 v∗

(
Y

0

)
v
)
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1.2 SU(2)-action on Hirzebruch surfaces
Let S3 = {(a, b) ∈ C2 : |a|2 + |b|2 = 1} ⊂ C2 be the 3-dimensional sphere, consider the circle group action:

S1 ×
(

S3 × C
)
−→ S3 × C

u.((a, b), z) := ((ua, ub), u−mz)

for some m ∈ Z, consider the quotient space
(
S3 × C

)
/S1, it is a complex line bundle over P1 ∼= S3/S1 via the

projection:
π :

(
S3 × C

)
/S1 −→ P1

[(a, b), z] 7→ [a, b]

which by our construction, is the bundle O(−m), it can be embedded into a trivial bundle:

i :
(

S3 × C
)

/S1 ↩→ P1 ×
(

C2
)⊗m

[(a, b), z] 7→ ([a, b], z((a, b)⊗ ... ⊗ (a, b)))

Now the SU(2) action on O(−m), choose v ∈ S3 ⊂ C2 and z ∈ C:

A.[v, z] := [Av, z]

this action is precisely the restriction of SU(2) action on trivial bundle P1 × (C2)⊗m:

A.([ℓ], w) :=
(
[Aℓ], A⊗mw

)
for some ℓ ∈ C2 \ {0}, and w ∈ C2m , this is a symplectic action since it preserves the symplectic forms on each
component.

Now, we wish to compactify O(−m) into a compact manifold, the way is to glue to it a copy of O(m):

Wm = (O(−m) ⊔O(m))
/ (

[(a, b), z] ∼ [(a, b), z−1]
)

This is a sphere bundle over P1, the fibre is also P1, the result of this compactification is the quotient space(
S3 × P1) /S1, where the circle group action is given by:

S1 ×
(

S3 × P1
)
−→ S3 × P1

u.((a, b), [x, y]) := ((ua, ub), [x, umy])

This kind of surfaces is called the Hirzebruch surface Wm, the SU(2) action is defined by

A.[v, [ℓ]] := [Av, [ℓ]]

for some v ∈ S3 ⊂ C2 and ℓ ∈ C2 \ {0}. We note from our inclusion that embeds O(−m) in to a trivial bundle,
which will induce an inclusion:

j :
(

S3 × P1
) /

S1 ↩→ P1 × P2m

[v, [x, y]] 7→
(
[v],

[
x.v⊗m, y

])
Like before, the SU(2) action on Wm can be viewed as the restriction action on P1 × P2m 1, which is defined by:

A.([ℓ], [w, z]) :=
(
[Aℓ], [A⊗mw, z]

)
This is a Hamiltonian action, and the moment map can be computed as follows:
Start form SU(2) action on the Euclidean space C2 × C2m+1, this action is composed from the action on

each components,if denoted by µ′
1, µ′

2 and µ′ for the moment maps associated with C2,C2m+1 and their product
respectively, then we have

µ′ = µ′
1 + µ′

2

this follows from the matrix of symplectic form on the product space is the juxtapose of each component, which
by my computation

µ′
1(v) =

(
X 7→ i

2 ∥ v ∥2 v∗Xv
)

1Here, we will take P2m as the projectivization of
(
C2)⊗m ⊕ C
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µ′
2(w, z) =

X 7→ i
2(∥ w ∥2 +|z|2) (w̄, z̄)


X

...
X

1

(
w
z

)
then descending µ′ to P1 × P2m and by composition:

..
. ..C2 × C2m+1 ..su(2)∗

..Wm ..P1 × P2m .

.

µ′
1 + µ′

2

.π.
j

.µ . µ′

2 The Classification
Koszul’s slice theorem is the only tool which can help us to do the classification under the Lie group action, the
way is to consider the quotient map f : M −→ M/G, each point in the quotient M/G corresponds to an orbit,
however, the principal orbits will take up the most room, so we just need to find which points are corresponding
to the singular orbits or the exceptional orbits, a primitive image f−1(U) of U which contained x ∈ M/G will
be tubular neighbourhood of the corresponding orbit, then we analyse its stablizer Gx, by the Koszul’s slice
theorem, it will have the homotopy type (G × Vx)/Gx, where Vx is the normal fibre, and the manifold M is the
connected sum of some of these primitive images.

2.1 The principal orbits
By the proposition 3.2.10, the stablizer of a principal orbit is both discrete and closed subgroup of the maximal
torus of SU(2), which is

S1 :=
{(

z 0
0 z̄

)∣∣∣∣ |z| = 1
}

hence the stablizer is a cyclic group Zm, and the principal orbits have dimension 3.

2.2 Exceptional orbits
The exceptional orbits have the same dimension as the principal orbits, thus it is also in dimension 3, to deduce
its stablizer, we will need the equivariance of the moment map:

Lemma 1. The moment map is equivariant under the G action on M and the coadjoint action, i.e the following
diagram commutes:

..
..M ..g∗

..M ..g∗
.

µ

.g . Ad∗
g.

µ

Outlines of the proof : Just to check the commutativity of the infinitesimal case:

..
..M ..g∗

..TM ..g∗
.

µ

.X . ad∗
X

.
dµ

Now, for an exceptional orbit SU(2).x its image under the moment map is an coadjoint orbit in su(2) ∼= R3,
which is a symplectic leaf, hence has dimension 2, thus it is S22, hence the stablizer SU(2)x is a subgroup
of SU(2)µ(x), the later has dimension 1, hence it is Zq, a tubular neighbourhood has the homotopy type
(SU(2)× R)/Zq, Zq acts on R either by trivial action or the reflection, however, in the non-trivial case, that

2One need to check that the coadjoint orbit of SU(2) in dimension 2 is a sphere S2
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yields a non-orientable normal bundle, hence its impossible3, and all orbits in this neighbourhood have stablizer
Zq

4, hence q = m5, there are no exceptional orbits.

2.3 Singular Orbits
Since S1 is a subgroup of SU(2), which induces the Hamiltonian torus action, hence must have a fixed points,
whose stablizer containing S1 as a subgroup, hence with dimension bigger that 1, hence the orbit will be strictly
less than 3, this is a singular orbit.

The dimension of a singular orbit could only be 2,1 or 0, the dimension of the corresponding stablizer will be
1,2 or 3, since SU(2) has no 2-dimensional Lie subgroups6, thus it could only be 1-dimensional Lie subgroups or
SU(2) itself, the later case is the fixed point of this SU(2) action, the tubular neighbourhood has the homotopy
type C2, and with moment map µ(x) = 0.

To investigate the 1-dimensional case, we use the 2-sheeted covering map:

ϕ : SU(2) ∼= S3 −→ SO(3) ∼= RP3

the later has only 2 non-conjugated 1-dimensional Lie subgroups O(2) and SO(2) ∼= S1, now we denoted by the
H the stablizer of a singular orbit of dimension 1, that ϕ will induce a covering map on the level of orbits:

ϕ̄ : SU(2)/H −→ SO(3)/ϕ(H)

The later is either S2 or RP2, hence no matter what H is, this singular orbit is S2, hence the tubular neighborhood
(SU(2)× R2)/H has the homotopy type of line bundle over P1, i.e an O(m) for some m odd.

So now, we can see that the quotient space M/SU(2) is a 1-dimensional closed manifold with boundary, i.e.
a closed interval [a, b] with each end point corresponds with a singular orbit, but we didn’t know what singular
orbits are, both fixed points? Both S2? Or one for each other? We will use the following lemma to except the
first case.

Lemma 2. The function f = 1
2 ∥ µ ∥2: M −→ [0, c] can be viewed as the quotient map, i,e. there exists a

bijection g : M/SU(2) −→ [0, c]7, such that the following diagram commutes:

..
..M ..[0, c]

..[a, b] ∼= M/SU(2) .

.

f

.π . g

Proof :One can consider the descending of f , namely

g : M/SU(2) −→ [0, c]

[x] 7→ 1
2
∥ µ(x) ∥2

Notice that this is well-defined, since for A ∈ SU(2), we have µ(Ax) = µ(x), we can see it from the commutative
diagram:

..
..M ..su(2)∗

..M ..su(2)∗

.

µ

.A . Ad∗
A

.
µ

3A normal bundle in a orientable manifold is always orientable, now our symplectic 4-manifolds is orientable, thus the action
must be trivial.

4The action of SU(2) on this tubular neighbourhood is

SU(2)×
(
(SU(2)× R)/Zq

)
−→ (SU(2)× R)/Zq

(A, [B, r]) 7→ [AB, r]

and if [AB, r] = [B, r] which implies that there exists U ∈ Zq such that AB = UB, hence the stablizer of [B, r] is all U ∈ Zq, which is
Zq.

5Notice that, not as the case of S1, the cyclic subgroups Zq, Zm of SU(2) are not conjugate.
6The connected Lie subgroups of a Lie group corresponds to a Lie subalgebra of its Lie algebra, since su(2) ∼= R3, it has no

2-dimensional Lie subalgebras.
7This lemma actually gives a proof of the quotient space is a closed interval!
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we have µ(Ax) = Ad∗
Aµ(x), for any X ∈ su(2), we have

⟨Ad∗
Aµ(x), X⟩ = ⟨µ(x), A∗XA⟩ = i

2
tr(A∗XAµ(x))

=
i
2

tr(Xµ(x)) = ⟨µ(x), X⟩

Now, it suffices to show that g is bijective, it is surjective since f , π are surjective, differentiate f we have

(d f )xY = ⟨µ(x), (dµ)xY⟩

Figure 1: figure

where ⟨, ⟩ is the inner product on su(2)∗, now, if x ∈ M is a critical
point of f , then for Y ∈ ker(d f )x if and only if (dµ)xY ∈ Tµ(x)S

2 ∼=
Tµ(x)(SU(2).µ(x)), which only if x is in a singular orbit, thus after the
descending g is an injective, hence leads our result. �

Now to deduce the classification, we assume f (M) = [a, b], we choose
c ∈ [a, b], then f−1(c, b] is a tubular neighbourhood of a singular orbit,
since b ̸= 0, it is a line bundle O(m) over P1, then as for f−1([a, c]),there
are only two cases:

1). If a = 0, f−1(a) is the fixed points, its tubular neighbourhood has
the homotopy type of C2, then M is obtained by gluing a disk to a line
bundle, which is P2

2).If a > 0, then f [a,c] is also a line bundle, M is obtained by gluing
two bundles, it is a Hirzebruch surface.
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