

Universal bundle and classifying space

2022 年 7 月 25 日

We shall consider numerable coverings, that is, locally finite numerable coverings $\{U_i\}_{i=1}^\infty$ such that there exists a partition of unity $\{u_i\}_{i=1}^\infty$ with:

$$0 \leq u_i \leq 1, \quad \overline{u_i^{-1}([0, 1])} \subset U_i, \quad \forall i$$

Notice, for instance, that any paracompact space has a numerable covering.

A fiber bundle over B is said to be numerable if there exists a numerable covering of B which makes it locally trivial. In this note, all the fiber bundles will be assumed to be numerable, even if I forgot to mention it explicitly.

定义 1 (Principal G-bundle) Let $p : E \rightarrow B$ be a (G, F) -bundle, F is the fiber, G is the structure group, if $F = G$ and satisfying the following properties.

- (1) The total space E has a free, fiberwise right G action.
- (2) The induced action on fibers is free and transitive.
- (3) There exist local trivializations

$$\psi : U \times G \rightarrow p^{-1}(U)$$

that are equivariant.

$$\psi(x, g)h = \psi(x, gh)$$

we say $p : E \rightarrow B$ is a principal G -bundle.

定义 2 (Pull-back bundle) Let $p : E \rightarrow B$ be a fiber bundle, and let $f : B' \rightarrow B$ be a continuous map, define the pull-back bundle over B' as follows:

$$f^*(E) = \{(b', e) : f(b') = p(e)\}$$

$$\begin{array}{ccc} f^*(E) & \dashrightarrow & E \\ \downarrow p' & & \downarrow p \\ B' & \xrightarrow{f} & B \end{array}$$

命题 1 Let $p : E \rightarrow B$ be a fiber bundle, then the pull-back bundle $f^*(E)$ is a fiber bundle with the same fiber. Moreover, if $p : E \rightarrow B$ is a principle G-bundle, then $f^*(E)$ is a principle G-bundle as well.

证明 Let $\varphi_\alpha : U_\alpha \times G \rightarrow p^{-1}(U_\alpha)$ be local trivializations of the bundle $p : E \rightarrow B$, for $p' : f^*E \rightarrow B'$, we define

$$\begin{aligned}\varphi'_\alpha : f^{-1}U_\alpha \times G &\longrightarrow p'^{-1}(f^{-1}U_\alpha) \\ (b', g) &\longmapsto (b', \varphi_\alpha(f(b'), g))\end{aligned}$$

then φ'_α are local trivializations of the bundle $p' : f^*E \rightarrow B'$, and if $\varphi_\alpha(x, g)h = \varphi_\alpha(x, gh)$, we have

$$\begin{aligned}\varphi'_\alpha(b', g)h &= (b', \varphi_\alpha(f(b'), g))h \xrightarrow{\text{fiberwise}} (b', \varphi_\alpha(f(b'), g)h) \\ &= (b', \varphi_\alpha(f(b'), gh)) = \varphi'_\alpha(b', gh)\end{aligned}$$

so $p' : f^*E \rightarrow B'$ is a principle G-bundle. \square

定理 1 Let $p : E \rightarrow B$ be a principle G-bundle, and let $f_0 : X \rightarrow B$ and $f_1 : X \rightarrow B$ be homotopic maps. Then the pull-back bundles are isomorphic,

$$f_0^*(E) \cong f_1^*(E)$$

The main step in the proof of this theorem is the basic *Covering Homotopy Theorem* for fiber bundles which we now state.

引理 1 (Covering Homotopy Theorem) Let $p : E \rightarrow B$ and $q : Z \rightarrow Y$ be fiber bundles with the same fiber F , where B is normal and locally compact. Let h_0 be a bundle map

$$\begin{array}{ccc} E & \xrightarrow{\tilde{h}_0} & Z \\ p \downarrow & & \downarrow q \\ B & \xrightarrow{h_0} & Y \end{array}$$

Let $H : B \times I \rightarrow Y$ be a homotopy of h_0 (i.e. $h_0 = H|_{B \times \{0\}}$). Then there exists a covering of the homotopy H by a bundle map

$$\begin{array}{ccc} E \times I & \xrightarrow{\tilde{H}} & Z \\ p \times 1 \downarrow & & \downarrow q \\ B \times I & \xrightarrow{H} & Y \end{array}$$

Proof of the theorem 1. Let $p : E \rightarrow B$, and $f_0 : X \rightarrow B$ and $f_1 : X \rightarrow B$ be as in the statement of the theorem. Let $H : X \times I \rightarrow B$ be a homotopy with $H_0 = f_0$ and $H_1 = f_1$. Since there is a bundle map

$$\begin{array}{ccc} f_0^* E & \longrightarrow & E \\ p' \downarrow & & \downarrow p \\ X & \xrightarrow{f} & B \end{array}$$

so by the covering homotopy theorem there is a covering of the homotopy H

$$\begin{array}{ccc} f_0^* E \times I & \xrightarrow{\tilde{H}} & E \\ p' \times 1 \downarrow & & \downarrow p \\ X \times I & \xrightarrow{H} & B \end{array}$$

It's a bundle morphism with the same fiber F , so (by Lemma 2) there is a bundle isomorphism between $f_0^* E \times I$ and $H^* E$

$$\begin{array}{ccc} f_0^* E \times I & \xrightarrow{\cong} & H^* E \dashrightarrow E \\ \downarrow & & \downarrow \text{ } | \text{ } p \\ X \times I & \xrightarrow{=} & X \times I \dashrightarrow B \end{array}$$

We know $H_1 = f_1$, so restricting this isomorphism to $X \times \{1\}$, we have $f_0^* E \cong f_1^* E$. \square

引理 2 Let $E_1 \rightarrow B_1$ and $E_2 \rightarrow B_2$ be two (G, F) -bundles. Any morphism

$$\begin{array}{ccc} E_2 & \xrightarrow{g} & E_1 \\ \downarrow & & \downarrow \\ B_2 & \xrightarrow{f} & B_1 \end{array}$$

induces an isomorphism $g' : E_2 \rightarrow f^* E_1$.

证明 We define the map $g' : E_2 \rightarrow f^* E_1$ as $e_2 \mapsto (p(e_2), g(e_2))$, then g' is a bundle morphism. It's easy to check that g' is injective: if $g'(e) = g'(e')$, then $p(e) = p(e')$ and $g(e) = g(e')$, so $e' = x \cdot e$ for some $x \in G$. Then we have $g(e) = g(x \cdot e)$, one sees that $x = 1$. (Since g is a isomorphism in each fiber.) Moreover g' is surjective as well: for some $b_2 \in B_2$, we know if restrict the three bundles $f^* E_1, E_2$ and E_1 on b_2, b_2 and $f(b_2)$ respectively, they are isomorphic. So for some $(b_2, e_1) \in f^* E_1$, we have some $e' \in E_2, p(e') = b_2$, and we know exist some $x \in G, g(x \cdot e') = e_1$. Then we have $x \cdot e' \in E_2, g'(x \cdot e') = (p(x \cdot e'), g(x \cdot e')) = (b_2, e_1)$. \square

We try now to construct a principal G -bundle which is universal. In other words, we want a bundle $\mathcal{E} \rightarrow \mathcal{B}$ such that any principal G -bundle is induced by a map $B \rightarrow \mathcal{B}$. More precisely, we define the universal bundles as follows.

定义 3 (Universal bundles) A numerable principal G -bundle $\mathcal{E} \rightarrow \mathcal{B}$ is called universal, if

- (1) For any numerable principal G -bundle $E \rightarrow B$, there exists a map $f : B \rightarrow \mathcal{B}$ such that E is isomorphic to $f^*\mathcal{E}$.
- (2) Two maps $f, g : B \rightarrow \mathcal{B}$ induce isomorphic bundles *if and only if* they are homotopic.

注 A principal G -bundle $\mathcal{E} \rightarrow \mathcal{B}$ is called universal if the pull back construction

$$\rho : [B, \mathcal{B}] \rightarrow \text{Prin}_G(B)$$

is a bijection for every space B . Here $[B, \mathcal{B}]$ is the set of the whole homotopic classes, and $\text{Prin}_G(B)$ is the set of the whole isomorphic classes of principal G -bundles over B . The two conditions in the definition guarantee that this map is well-defined and bijective. \mathcal{E} and \mathcal{B} are called the universal bundle and classifying space of G respectively, one can denote them as EG and BG sometimes.

The main goal of this note is to prove that universal bundles exist for every group G , and that the classifying spaces are unique up to homotopy type. Milnor has given a very beautiful (and, furthermore, explicit) construction of universal bundles, called the Milnor join.

定义 4 (Milnor join) Let G be a group and consider the join

$$G^{*(n+1)} = G * G * \cdots * G = G^{n+1} \times \Delta^n / \sim$$

Here $G^{n+1} \times \Delta^n = \{(x_0, t_0; x_1, t_1; \dots; x_n, t_n) | x_i \in G, t_i \in [0, 1], \sum t_i = 1\}$ and

$$(x, t) \sim (x', t') \iff t = t' \text{ and } x_i = x'_i \text{ (when } t_i = t'_i \neq 0\text{)}$$

We shall write $\langle x_0, t_0; \dots; x_n, t_n \rangle$ for the equivalence class of the element under consideration. The limit

$$\mathcal{J}(G) = \lim_{n \rightarrow \infty} G^{*(n+1)}$$

is defined by the inclusion maps $G^{*(n+1)} \rightarrow G^{*(n+2)}$. Any element in $\mathcal{J}(G)$ will thus be written $\langle x_0, t_0; \dots; x_n, t_n; \dots \rangle$ or for brevity $\langle x, t \rangle$. Notice that, for any element of $\mathcal{J}(G)$, all the t_i 's, except a finite number, are zero. We endow this set with the least expensive topology such that all the maps

$$\begin{aligned} t_i : \mathcal{J}(G) &\longrightarrow [0, 1] \\ \langle x_0, t_0; \dots; x_n, t_n \rangle &\longmapsto t_i \end{aligned}$$

and

$$t_i^{-1}([0, 1]) \longrightarrow G$$

$$\langle x_o, t_0; \dots; x_n, t_n \rangle \longmapsto x_i$$

are continuous.

Notice that the group G acts on $G^{*(n+1)}$ and $\mathcal{J}(G)$ by

$$g \cdot \langle x, t \rangle = \langle gx, t \rangle$$

which is clearly free actions. So we get a principal G -bundle

$$p : \mathcal{J}(G) \longrightarrow \mathcal{J}(G)/G$$

Since G does not act on the coordinate t_i , there is also a continuous map

$$\tilde{t}_i : \mathcal{J}(G)/G \longrightarrow [0, 1]$$

It turns out that the open subsets $V_i = \tilde{t}_i^{-1}([0, 1])$ constitute a numerable covering of $\mathcal{J}(G)/G$ and that the principal bundle $\mathcal{J}(G) \rightarrow \mathcal{J}(G)/G$ is trivialized on these open sets.

We shall now explain (without too much proof) that the principal bundle $\mathcal{J}(G) \rightarrow \mathcal{J}(G)/G$ were made to be universal.

命题 2 *For any numerable principal G -bundle, E over B , there exists a map $f : B \rightarrow \mathcal{J}(G)/G$ such that $f^* \mathcal{J}(G)$ is isomorphic with E .*

证明 We construct two maps f and g such that the diagram

$$\begin{array}{ccc} E & \xrightarrow{g} & \mathcal{J}(G) \\ p \downarrow & & \downarrow \\ B & \xrightarrow{f} & \mathcal{J}(G)/G \end{array}$$

commutes. For that, we use a partition of unity $\{u_n\}$ on B such that $E|_{u_n^{-1}([0, 1])}$ is trivial. Put $U_n = u_n^{-1}([0, 1])$, let

$$\begin{array}{ccc} U_n \times G & \xrightarrow{h_n} & E|_{U_n} \\ & \searrow & \swarrow \\ & U_n & \end{array}$$

be a local trivialization, and call q_n the projection $U_n \times G \rightarrow G$. The map g we want to define is simply

$$g(z) = \langle q_0 h_0^{-1}(z), u_0(p(z)); \dots; q_n h_n^{-1}(z), u_n(p(z)); \dots \rangle$$

This is better defined than one might think: of course, $h_n^{-1}(z)$ is defined only for $z \in p^{-1}(U_n)$, but, if this is not the case, $u_n(p(z)) = 0$.

Now g is a bundle morphism, we know $E \cong f^* \mathcal{J}(G)$ by Lemma 2. \square

It is slightly more technical, but not much more difficult, to prove that the Milnor join is indeed universal. We need the next proposition.

命题 3 *Let $f : X \rightarrow \mathcal{J}(G)/G$ and $g : X \rightarrow \mathcal{J}(G)/G$ be continuous maps, and there is an bundle isomorphism*

$$\Phi : f^* \mathcal{J}(G) \longrightarrow g^* \mathcal{J}(G)$$

then f and g are homotopic.

We have now find a universal principal G -bundle $\mathcal{J}(G) \rightarrow \mathcal{J}(G)/G$ for every group G . Moreover, we will see it's unique in the meaning of homotopy equivalence.

定理 2 *Let $E_1 \rightarrow B_1$ and $E_2 \rightarrow B_2$ be universal principal G -bundles. Then there is a bundle map*

$$\begin{array}{ccc} E_2 & \xrightarrow{\tilde{f}} & E_1 \\ \downarrow & & \downarrow \\ B_2 & \xrightarrow{f} & B_1 \end{array}$$

so that f is a homotopy equivalence.

证明 Since $E_2 \rightarrow B_2$ is universal, so for principal G -bundle $E_1 \rightarrow B_1$, there is a “classifying map” $g : B_1 \rightarrow B_2$ and an isomorphism $E_1 \cong g^* E_2$. Similarly, using the universal property of $E_1 \rightarrow B_1$, we get a “classifying map” $f : B_2 \rightarrow B_1$ and an isomorphism $E_2 \cong f^* E_1$. So $E_2 \cong f^*(E_1) \cong f^*(g^*(E_2)) = (g \circ f)^* E_2$, that is $id^* E_2 \cong (g \circ f)^* E_2$, so $(g \circ f) \simeq id_{E_2}$. Similarly, $(f \circ g) \simeq id_{E_1}$, so f is a homotopy equivalence. \square

We now denote $\mathcal{J}(G)$ as EG , $\mathcal{J}(G)/G$ as BG . In the same mood, one proves the following useful result.

命题 4 *Let $E \rightarrow B$ be any numerable principal G -bundle such that the total space E is contractible, then this is a universal principal G -bundle.*

We just admit the general fact that the spaces $\mathcal{J}(G)$ we have described are indeed contractible.