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Abstract

This is my final homework of the course ”Linear Systems in Algebraic Varieties”, the
homework is mainly the reading notes of the Kodaira embedding theorem, which states as:

Theorem 0.1 (Kodaira). Let X be a compact Kahler manifold, if X endowed with a positive
line bundle, then it can be embedded to some projective space:

i: X —P"

As another part of this homework, I investigated a type of ruled surface, the Hirzbruch
surfaces, and I gave a diffeomorphic classification of them, it will be appeared in the appendix.

Figure 1: Kunihiko Kodaira
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Kodaira Embedding

1 Ampleness, Very Ampleness of a Line Bundle

1.1 Basic Definitions

Let X be a compact manifold, and 7 : L — X is a holomorphic line bundle.

Definition 1.1 (Spanned Line Bundle). We say a line bundle L is spanned, if for all x € X,
there exists a section s € HY(X, L) such that s(x) # 0.

Example. For P", the line bundle O(n) is spanned if and only if n > 0.

Remarks.

(1). If a point x € X so that all sections vanishing at this point, such a point will be called a
base point of the line bundle L, the collection of all base points of L is called the base point
locus of L, denoted by BS(L).

(2). If we choose a local trivialization {Uy, ¢y }aca of L, where ¢ : m= 1 (Uy) — U, x C, a
section s € HY(X, L) can be expressed locally by

Sp i=¢uos: Uy — C
It is clearly that s, € O(Uy), and if for some Ug N U, # &, one has

sa(%) = gup(¥)sp(x)
on Uy N Upg, where g, is the clutching function and it is in O* (U, N Up).

Definition 1.2. For a spanned line bundle L, we define a map:
ir : X — P(H(X,L))

x — H,

where Hy is hyperplane of HO(X,L) consisting of all global sections which vanishing at x € X.

Remarks.

(1).We need recall that the space of global sections of a line bundle T'(L) is a finite generated
O(X)—module, since our X is a compact manifold, the global holomorphic functions are
constants, hence it is a C—space, hence the projectivization of HO(X, L) is exactly IP", for
some integer n.

(2).The map ¢y, can be expressed locally, if we choose a local trivialization {Uy, s }aen, as the
notation in the last remark, denoted by

the local expression of the i—th basis of global sections, then we have

¢rlu, (x) = [s3(x), . 55 (x)]

and the expression form will not be change when changing the local trivialization, since we

have
¢ lunug (x) = [52(x), -, 55 (x)]

= [gup ()53 (x), - Qup (X)s (x)]
= [sg(x),..., sp(x)]

and it is well-defined since the line bundle is spanned.

!Sometimes I will use L|q;, instead of the notation 771 (Uy)
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(3).It is not hard to see that the ¢ is holomorphic.
(4)Moreover, we have the pull-back:

¢L(Opn(1)) = L

Indeed, let the zy be a global section of Opx(1), the divisor associated to it is denoted by Dy,
then the pull-back of Dy under ¢|r is s9, which corresponds to the line bundle L over X, hence

¢1(Op: (1)) = ¢r(Do) = L

Definition 1.3 (Ampleness, Very Ampleness). A line bundle L is very ample, if

¢ : X — P" is an embedding, it is ample, if there exists some positive integer k > 0 such
that L®* is very ample, a divisor D is said to be (very) ample if the corresponding line bundle
O(D) is (very) ample.

Example. The line bundle Opx(1) is very ample.

1.2 Cohomological Characterization of Very Ampleness

In this subsection, we will describe when ¢, is an embedding in terms of the language of
cohomology, recall that an embedding is an injective immersion.
(1). First, ¢ : X —> P" need to be well-defined, i.e. the line bundle need to be spanned. If
we denoted by

A= {s(x)|s € H(X,L),x € X}

and define the skyscraper sheaf L, as

A eu
ﬁ"(u):{o ieéu

hence , this condition it is equivalent to say the restriction map:

HO(X,L) %5 HO(X, L)

is surjective. This map is sited in the long exact sequence induced by the short exact sequence:
0—L®Z, —L—L,—0
Hence the condition ”"well-define” is equivalent to
HY(X,L®I,) =0

(2). Secondly, the ¢r need to be injective, that is for x # y € X, there exists a section
s € HY(X, L) which vanishes at x but not at y, like (1), it is equivalent to

HY(X,L) e, HY(X, Ly & Ly)
is surjective, it is sited in the long exact sequence induced by the short exact sequence:

0 —L®ZLyy—L—L®L,—0

Hence the injectiveness is equivalent to
1
H (X, Zyy) =0
(3). Finally, the map ¢ need to be an immersion, so we need to check the differential map

d(gr)x: TX — Tgy ()"

3
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If we choose basis sg, s1, ..., S, of HO(X, L) in some local trivialization, and assume that
so(x) # 0, then the map ¢ can be locally write as

_ [(s1(x) Sn(x)
ne) = [(565) (o
hence (d¢r )y is injective if and only if d <§—é) Syl (i—g) spanned the cotangent space
T;(LO)

X, which is equivalent to say

dy: HY(X, L) — HY(X, £y ® T: "0 X)
Sx > (ds)x

is surjective, since

T./72 = ;"X

so it is sited in the long exact sequence induced by the short exact sequence
0 —L®I?—L LT Wy o
So, in all, we have
Theorem 1.1. A line bundle L is very ample if and only if
HY(X,L®I;) = HY(X,Z.y) =0

forall x,y € X

2 Positivity in Complex Geometry

2.1 Basic Complex Analytic Geometry

Recall. (1).From now on we assume (X, w) is a compact Kahler manifold, where w is the
image part of the Hermitian metric i, which is called the Kidhler form, it is a non-degenerate
closed 2-form?, and we use (L, &) to represent for a line bundle endowed with an Hermitian
metric h.

(2).That h has a local expression under a local trivialization {U,, ¥, } of the line bundle L, and

ha = h|ua - ¢a Oh € O(UQ)
and for some U, N Ug # @, one has
ha(x) = |8ap (¥)[hp (%)

for some gup € O*(Uy N Ug).
(3). For any Hermitian metric h, there exists a Chern-Levi-Civita connection

V:T(L) —T(T"X®L)
on the line bundle L, usually, the connection V is a matrix-valued 1-form:

V=d+A

2People prefer to call such a 2-form a symplectic form.
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since our bundle is a line bundle, hence the connection matrix A is a precisely complex 1-form,
the curvature form is defined by

Qv =dA+ANA € QD (X;C)

which is a complex (1,1)—form.
(4). As above, the connection V and the curvature 0y both have the local expression, we use
notation in (1), and we shall use the Dolbeault operator d = 0 + 9, then

V|u, =9+ 0+ dloghy
Qvluu = éalogha

In particular, we can see that the curvature form Qv is a closed form, hence it is a cocycle in
the Dolbeault-de Rham cohomology group.

Definition 2.1 (1st Chern Class). The class
i

L)=|—0 H*(X

(L) = | 3:0v | € H(X)

is called the 1st Chern class of the line bundle L.

Theorem 2.1. The 1st Chern class does not depend on the choice of the connections!

proof. In the notations of the previous recall, given any two Hermitian metrics hy,hp on L,
with curvature form ), () respectively, the quotient

hi

=

hz hz
is independent of the trivialization {Uy, P }aeca of L, thus it is a well-defined positive function
ef for some real smooth function p, the formula hy = eh; yields

O, = 38p—|—01

i i
—0| = |=—0 |
27 = 37
Remark. There is another more algebraical way to define the Chern class.

We denoted by O% the sheaf of holomorphic functions without zeros, and Z the constant
sheaf, then we have the short exact sequence of sheaves:

hence we have

0—Z—0x — 0% —0

it will induce the long exact sequence on the level of sheaf cohomology groups, in particular,
we will have the connecting boundary:

5" HY(X, 0%) — H*(X,Z)
the later cohomology group is naturally isomorphic to the 2nd de Rham cohomology with
coefficient in Z, and since

Pic(X) = HY(X, Ox)
we can define the Chern class ¢1(L) of a line bundle L € Pic(X) as the image under §*, i.e.
c1(L) :=6*(L) € H*(X,Z)

Example. For X = P!, we have H?(P!,Z) = Z, the Chern class of the line bundle O(n) is
just n.
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2.2 Positivity of a Line Bundle

Definition 2.2. We say a real (1,1)—form w on X is positive if for any x € X and all
non-zero v € (TyX)R, one has
w(v, Jxv) >0

where [y is the almost complex structure induced by the complex structure on X.

Definition 2.3 (Positivity). A line bundle L is positive if there exists a metric h on L such
that the curvature form Qy, is a positive (1,1)-form.

Theorem 2.2. A line bundle L is positive if and only if its 1st Chern class can be represented
by a positive form in H*(X).

For the detailed proof, see [1].

Example. The line bundle Opx (1) is positive.
In fact, we shall first do this on its dual bundle, as the notation used above, we assume a local
trivialization on U, of Opn(—1) is given by

l/)“ = ([ZOI---/Zn]/Za)
now, define the Hermitian metric on Opx(—1) locally via
1 n
Za =0

Then the curvature form on Op:(—1), denoted by Q* is given by
- 1 n
()*|uA zaalog 722‘21'|2
|za]? 55
_ n
=dolog ( ) |z; |2

i=0

Then the curvature form on Opx(1), denoted by ), is —Q)*, hence

&1 (Opi(1)) = [—z;éabg (Z \zi\z)]

i=0

= [dd‘log (g ]zi]2>]

which is the (1,1)-form associated to the Fubini-Study, metric on P and hence positive.
Theorem 2.3. On a compact Kdhler manifold X, any ample line bundle L is positive.

proof. Since L is ample, there exists some integer k > 0 such that L% is very ample, i.e. the

mapping
¢L®k . X — H)?’l

is embedding, since Opn (1) is positive, hence there exists a positive Hermitian metric on it,
and the pull-back metric gives rise to a positive Hermitian metric on L®¥, and the k—th root
metric will give a desired positive metric. |

Conversely, any positive line bundle will be ample, this is the part of the Kodaira embedding
theorem.
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2.3 Kodaira Vanishing Theorem

Theorem 2.4 (Kodaira-Akizuki-Nakani Vanishing Theorem). If L is a positive line bundle,
on a complex compact manifold X, then for all p4+q > 0, we have

HP)(X,L) = HI(X,0%k ® L) = 0

In particular:
H1(X,Kx®L)=0

for all g > 0, where Kx is the canonical line bundle over X.

For a detailed proof, I'd like to refer [1].
As an application, there is a low-dimensional version of the Kodaira embedding theorem:

Theorem 2.5. Every compact Riemann surface can be embedded to a projective space.

proof. We will mainly show that for any divisor D with degree deg D > 2¢ + 1 on a compact
Riemann surface X with genus g is very ample. Theorem 2 will be a powerful tool.
We notice that

H'(X,0x(D)®12) = HY(X,D —2[x]) = H(X,Kx + (Kx — 2[x] — Kx))

and since

deg(D —2[x] —Kx) =degD —2—-2¢+2>1
the line bundle Ox (D — 2[x] — Kx) is positive, thus by Kodaira vanishing theorem,we have:

HY (X,0x(D)®1I%) =0
Analogously we can show H!(X, Ox(D) ® Z,) = 0, hence by theorem 2, D is very ample. B

However, for high-dimensional manifold X, the ideal sheaf Z, may not be an invertible sheaf,
this method lost its power on this case, but we can replace the point by a divisor, the so called
the exceptional divisor after a topological surgery: the blowing up.

3 Blowing Up

We will mainly discuss about the blowup X at a point x € X, which will be the main technique
appeared in the proof of Kodaira embedding theorem.

3.1 Blow Up at a Point

We first start from C", let U be a neighbourhood of 0 in C" with local coordinate z1, ..., zy;.

Definition 3.1. Define:
U= {(Z,g) e Uux ]Pnil‘zigj = ngi}

with a projection:
m:0—Uu

(z,0) — z
Remark. [I has some equivalent characterizations:
Z1 ... Zp
<1
rank <zl en> = }

={(z,0) e UxP" |z = (21,..,21) €L = [l4,.... 0s]}

U= {(Z,E) euxprt
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7

Figure 2: U

Proposition 1. By our definition we have
(1). E:= 7 1(0) 2 P"!, which is called the exceptional divisor.>
(2). The restriction of the projection:

o~

Tl s O\ E 5 U\ {0}
is a biholomorphism.

Definition 3.2. If we denoted by ¢ := 7T|U\E7 we call
Ct = (C"\{O}JUNE) / ~
the blowing up of C" at the origin.
Proposition 2. This definition is independent of the Choice of U, hence it is well-defined.
proof. For (zi,...,z;,) := (f1(21), -, fu(2n)), we can see that the diffeomorphism
f:U\E— U\F

may be extended via

fon=00) =yl w
k=1 9%k lo

Remark. (1). It is possible to define the blowup at a point x on any complex manifold X.
(2).We can see that the exceptional divisor E can be identified with ]P(T,SLO)X), via

! )

(3).Next, we will describe the local coordinate of the blown up.
On U = {(z,¢) € U x H’”*llziﬂj = z;l;},we define the local charts U; := U\ {¢; = 0}, we
define:

gDZ' : C[i — Cn
21 Zi-1 Zn
(z,0) — <,..., =, Zi e, —
Zj Zi Zj
| i
= (21, 2y)

we have the coordinate transformation:

3This divisor is defined as the Weil divisor, where E is a hypersurface in X, the manifold after the blowup, the
divisor take value 1 at E and zero and any other hypersurfaces.
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. . Zt Zi g . 1 z!
-1 i i\ 1 ] 0 n
q)ioqoi |uimuj(zl,...,zn) = (.,..., - ’iji""’ e T
Hence locally we have

7r|ai(zi1,...,zf1) = (zizﬁ,...,zizil)
Dely, = (2i)
Since the exceptional divisor Dg|;; = (z;), hence the transition function of the line bundle
Ox(E) is given by

gij:?:?:flmflj%@
] )
So we can realize the line bundle O (E) by identifying the fiber at point (z,¢) as the complex
line passing through ({4, ..., ¢;), more particularly, the restriction of this line bundle on E is
exactly the tautological line bundle

Or(E) = Opn1(—1)
(4). Under our identification P(T{""X) = E, we will have
HO(E, Og(~E)) = Ty X

Moreover, we have the following diagram commutes:

HO(U, ) i HO(U, Oy (—E))
d

I

T "X = HO(E, Of(—E))

In the viewpoint stated in [7], the local analytic behavior of a function at x is magnified to the
global behavior of X.

3.2 Line Bundles on a Blown Up

Theorem 3.1. If L is a positive line bundle over a complex manifold X, then there exists a
positive integer k > 0 such that for any n € Z the line bundle m*LF @ Ox(—nE) is a positive
line bundle.

proof. We first construct a metric on Og(E) by the uniform decomposition.

(1).Let hy be the metric on O (E) restriction of the standard metric in C" passing through
(01, e lyy).

(2).Let ho be the metric on O, g(E) such that hy(0) =1, where 0 € HO(X,E) is a global
section of Op(E) with (0) = E.

(3). For e > 0, Ue := {z € U|||z]| < €} and U, := w1 (U¢). Let py, 02 be a partition of unity
to the cover {Upe, X \ Ue} of X and h be a global Hermitian metric given by

h = p1h1 + p2h2

Then let’s compute the positivity of this metric.
(a). On X\ Uy, p2 = 1, hence hy(¢) =1, i.e. in the trivialization above h,|oy|? = 1, and

- 1
Cl(E) = —ddlogW =0

9
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since log 1/|c]? is harmonic.
(b). On X\ Uy, p2 = 0, we denote

70— P!

(z,0) — ¢

then )
c1(E) = ddlog ||z||* = —(7')*wrs

hence the pull-back 71"*wps of the fundamental (1,1)-form associated to the Fubini-Study
metric under the map 7’ and c¢;(E) is semi-positive on U, \ E.
(¢). On E, we have, by continuity form previous remark:

—C1(E)|E =w >0

So, to sum up:

0 X\l
C1<_E) =<¢=>0 He
(1,0) (1,0)

>0 Ty 'ECTy X
Let (L, k1) be an Hermitian positive line bundle over X, then
c1(*L) = m*c1(L)
For any x € E and v € Ty X we have

c1(*L)(v,7) = c1(L)(t*v, w5 0) > 0

where the equality holds if and only if 77*v = 0. Hence we have

>0 everywhere
ci(m*L)=<>0 X\E
>0 TMO%X/TME
So we can see that
c1(m*L* ® (=E)) = key (°L) — ¢1(E)

is positive on U. and X \ Uy for € small enough. Since Uy \ U, is relatively compact, —c1(E)
is bounded below and ¢ (7t*L) is strictly positive, then for k big enough, 7*L¥ ® O (—nE) will
be a positive line bundle. W

Theorem 3.2. Let Kx denote the canonical line bundle over X, we have
Ky = N*(Kx) & 05(((1’1 — 1)E)

For a detailed proof I'd like to refer to [7].

10
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4 Kodaira Embedding Theorem

Theorem 4.1 (Kodaira Embedding). A line bundle L over a compact Kihler manifold X is
positive if and only of it is ample, hence if X admits a positive line bundle, then X is projective.

proof. The ampleness implies the positivity is stated in theorem 2.3, so it suffices to show if L
is positive, then there exists some integer k > 0 such that

¢ - X — P(HY(X, L))

is an embedding, as we discussed in section 1.2, that entails to show that:
(1). The restriction map:
HO(X,L¥) — H(X, Lk & £F)

is surjective for all x #y € X.
(2). The differential map:

dy : HO(X, L¥) — HO(X, £k @ Ty X)

is surjective for all x € X.

We’d seen form theorem 2.5, the theorem is right for compact Riemann surfaces, however, for
high-dimensional complex manifold, the ideal sheaf 7, may no longer be invertible, hence the
technique lost its power here, fortunately, we can use the blowing up.

Let 7T : )/(xvy — X be the blowup of X at two distinct points x,y, the exceptional divisors
denoted by Ey = 7t 1(x), E, = 7t (y) with respect to the point x,, and let E = Ey + E,, we
will have the following diagram commutes:

HO(X, L) ™ HO(X, " L¥)

H' (X, "Lk @ Ox(—E))

Indeed:
(a). LK is trivial along E, and Ey, in fact:
7-[*|Ex = 7T*|7T*1(x) = N*(Lk|x)
=" ({x} x LK) = E, x £k

Similarly we have H*Lk\gy =E, x E;, hence
H(X, L5 & Ly) = HY(E, n*LY)

(b). 7 : H(X,L*) — HO(X, 7*LF) is an isomorphism, in fact, 7t is a biholomorphism away
from E, 7t* is injective, by Hartogs theorem [1], any holomorphic section of 77*L¥ on

X\ ExUE, = X\ {x,y} can be extended to a holomorphic section of L¥ on the whole X, hence
7% is surjective.

(c¢). The restriction map |g : HO(X, w*LF) — HO(E, r*L¥) lies in the long exact sequence
induced by the short exact sequence:

0 — T LF® Og(—E) — Ox(n*LF) — Op(n*LF) — 0

11
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Hence the the map (1) is surjective if and only if H! (X, 7*LF ® Og(—E)) = 0, in fact, by
theorem 3.2 and 3.1, we have

'L ® Og(—E) = ' LF © Og(—E) ® Ky © Kg!
= ' LF© Og(~E) @ Kz ® (1"°Kx @ Og((n = 1)E)) ™
=Kg® (n*Lkl ® OX(—nE)) ® (n*(LkZ ® K§1)>

for some k > k1 + ko chosen suitably such that the line bundles 77*L* @ O (—nE) and
(LR ® K;(l) are positive, then applying Kodaira vanishing theorem (theorem 2.4) we have

H! (X TR (’)X(—E)> =0

Similarly for the surjectivity of (2), we can construct the following commutative diagram:

*

H (X, L*® 1)) ~ H® (X, m*L* @ Ox(—E))

dy l
B
W’O)X) = H (E, 7" L* @ O (~E))

H' (X, n*LF ® O5(—2E))

Indeed:
(d). Since 7t*L¥ is trivial along E, we have

H® (E,7*L* @ Og (~E)) = H(E, 7°L*) @ H'(E, Og(~E))
= HY(X, £ @ ;W0 x
— H° (X, ke T;‘“'O)X>

(e). The pull back 7* : H)(X, ¥ ® Z,,) — HY(X, 7*LF¥ ® O¢(—E)) is an isomorphism. In
fact, holomorphic sections of L¥ on X vanishing at x corresponds to the holomorphic sections
of 7t* vanishing along E.

(f). The restriction map

g+ HO (X T F® OX(—E)> — HO <E, T LF® OE(—E))
is sited in the long exact sequence induced from the short exact sequence:

00— Ox(—ZE) QT L — OX(—E) QT L — OE(—E) QRmTL — 0

Hence the differential map d, is surjective if and only if H' (X, 7*LF ® Og(—2E)) = 0, like in
(1), we can apply the Kodaira vanishing theorem to deduce it. B

12
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