
Reading Notes on Kodaira Embedding Theorem
Alexander Liu

July 26th 2022

Ecole Normale de Capitale
Départment de Mathématique

Abstract
This is my final homework of the course ”Linear Systems in Algebraic Varieties”, the

homework is mainly the reading notes of the Kodaira embedding theorem, which states as:
Theorem 0.1 (Kodaira). Let X be a compact Kähler manifold, if X endowed with a positive
line bundle, then it can be embedded to some projective space:

i : X ↩→ Pn

As another part of this homework, I investigated a type of ruled surface, the Hirzbruch
surfaces, and I gave a diffeomorphic classification of them, it will be appeared in the appendix.

Figure 1: Kunihiko Kodaira
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Kodaira Embedding

1 Ampleness, Very Ampleness of a Line Bundle
1.1 Basic Definitions
Let X be a compact manifold, and π : L −→ X is a holomorphic line bundle.

Definition 1.1 (Spanned Line Bundle). We say a line bundle L is spanned, if for all x ∈ X,
there exists a section s ∈ H0(X, L) such that s(x) ̸= 0.

Example. For Pn, the line bundle O(n) is spanned if and only if n ≥ 0.

Remarks.
(1). If a point x ∈ X so that all sections vanishing at this point, such a point will be called a
base point of the line bundle L, the collection of all base points of L is called the base point
locus of L, denoted by BS(L).
(2). If we choose a local trivialization {Uα, ϕα}α∈Λ of L, where ϕα : π−1(Uα) −→ Uα × C1, a
section s ∈ H0(X, L) can be expressed locally by

sα := ϕα ◦ s : Uα −→ C

It is clearly that sα ∈ O(Uα), and if for some Uβ ∩ Uα ̸= ∅, one has

sα(x) = gαβ(x)sβ(x)

on Uα ∩ Uβ, where gαβ is the clutching function and it is in O∗(Uα ∩ Uβ).

Definition 1.2. For a spanned line bundle L, we define a map:

iL : X −→ P(H0(X, L))

x 7→ Hx

where Hx is hyperplane of H0(X, L) consisting of all global sections which vanishing at x ∈ X.

Remarks.
(1).We need recall that the space of global sections of a line bundle Γ(L) is a finite generated
O(X)−module, since our X is a compact manifold, the global holomorphic functions are
constants, hence it is a C−space, hence the projectivization of H0(X, L) is exactly Pn, for
some integer n.
(2).The map ϕL can be expressed locally, if we choose a local trivialization {Uα, ψα}α∈Λ, as the
notation in the last remark, denoted by

si
α := ψα ◦ si : Uα −→ C

the local expression of the i−th basis of global sections, then we have

ϕL|Uα(x) = [s0
α(x), ..., sn

α(x)]

and the expression form will not be change when changing the local trivialization, since we
have

ϕL|Uα∩Uβ
(x) = [s0

α(x), ..., sn
α(x)]

= [gαβ(x)s0
β(x), ..., gαβ(x)sn

β(x)]

= [s0
β(x), ..., sn

β(x)]

and it is well-defined since the line bundle is spanned.
1Sometimes I will use L|Uα

instead of the notation π−1(Uα)
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Kodaira Embedding

(3).It is not hard to see that the ϕL is holomorphic.
(4)Moreover, we have the pull-back:

ϕ∗
L(OPn(1)) = L

Indeed, let the z0 be a global section of OPn(1), the divisor associated to it is denoted by D0,
then the pull-back of D0 under ϕ|L is s0, which corresponds to the line bundle L over X, hence

ϕ∗
L(OPn(1)) = ϕ∗

L(D0) = L

Definition 1.3 (Ampleness, Very Ampleness). A line bundle L is very ample, if
ϕL : X −→ Pn is an embedding, it is ample, if there exists some positive integer k > 0 such
that L⊗k is very ample, a divisor D is said to be (very) ample if the corresponding line bundle
O(D) is (very) ample.

Example. The line bundle OPn(1) is very ample.

1.2 Cohomological Characterization of Very Ampleness
In this subsection, we will describe when ϕL is an embedding in terms of the language of
cohomology, recall that an embedding is an injective immersion.
(1). First, ϕL : X −→ Pn need to be well-defined, i.e. the line bundle need to be spanned. If
we denoted by

A = {s(x)|s ∈ H0(X, L), x ∈ X}
and define the skyscraper sheaf Lx as

Lx(U) =

{
A x ∈ U
0 x /∈ U

hence , this condition it is equivalent to say the restriction map:

H0(X, L)
|x−→ H0(X,Lx)

is surjective. This map is sited in the long exact sequence induced by the short exact sequence:

0 −→ L ⊗ Ix −→ L −→ Lx −→ 0

Hence the condition ”well-define” is equivalent to

H1(X, L ⊗ Ix) = 0

(2). Secondly, the ϕL need to be injective, that is for x ̸= y ∈ X, there exists a section
s ∈ H0(X, L) which vanishes at x but not at y, like (1), it is equivalent to

H0(X, L)
|x,y−→ H0(X,Lx ⊕Ly)

is surjective, it is sited in the long exact sequence induced by the short exact sequence:

0 −→ L ⊗ Ix,y −→ L −→ Lx ⊕Ly −→ 0

Hence the injectiveness is equivalent to

H1(X, Ix,y) = 0

(3). Finally, the map ϕL need to be an immersion, so we need to check the differential map

d(ϕL)x : T(1,0)
x X −→ TϕL(x)P

n
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If we choose basis s0, s1, ..., sn of H0(X, L) in some local trivialization, and assume that
s0(x) ̸= 0, then the map ϕL can be locally write as

ϕL(x) =
[(

s1(x)
s0(x)

)
, ...,

(
sn(x)
s0(x)

)]
hence (dϕL)x is injective if and only if d

(
s1
s0

)
x

, ..., d
(

sn
s0

)
x

spanned the cotangent space

T∗(1,0)
x X, which is equivalent to say

dx : H0(X, L) −→ H0(X,Lx ⊗ T∗(1,0)
x X)

sx 7→ (ds)x

is surjective, since

Ix/I2
x = T∗(1,0)

x X

so it is sited in the long exact sequence induced by the short exact sequence

0 −→ L ⊗ I2
x −→ L −→ Lx ⊗ T∗(1,0)

x X −→ 0

So, in all, we have

Theorem 1.1. A line bundle L is very ample if and only if

H1(X, L ⊗ I2
x) = H1(X, Ix,y) = 0

for all x, y ∈ X

2 Positivity in Complex Geometry
2.1 Basic Complex Analytic Geometry
Recall. (1).From now on we assume (X, ω) is a compact Kähler manifold, where ω is the
image part of the Hermitian metric h, which is called the Kähler form, it is a non-degenerate
closed 2-form2, and we use (L, h) to represent for a line bundle endowed with an Hermitian
metric h.
(2).That h has a local expression under a local trivialization {Uα, ψα} of the line bundle L, and

hα := h|Uα = ψα ◦ h ∈ O(Uα)

and for some Uα ∩ Uβ ̸= ∅, one has

hα(x) = |gαβ(x)|2hβ(x)

for some gαβ ∈ O∗(Uα ∩ Uβ).
(3). For any Hermitian metric h, there exists a Chern-Levi-Civita connection

∇ : Γ(L) −→ Γ(T∗X ⊗ L)

on the line bundle L, usually, the connection ∇ is a matrix-valued 1-form:

∇ = d + A
2People prefer to call such a 2-form a symplectic form.
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since our bundle is a line bundle, hence the connection matrix A is a precisely complex 1-form,
the curvature form is defined by

Ω∇ = dA + A ∧ A ∈ Ω(1,1)(X; C)

which is a complex (1, 1)−form.
(4). As above, the connection ∇ and the curvature Ω∇ both have the local expression, we use
notation in (1), and we shall use the Dolbeault operator d = ∂ + ∂, then

∇|Uα = ∂ + ∂̄ + ∂ log hα

Ω∇|Uα = ∂̄∂ log hα

In particular, we can see that the curvature form Ω∇ is a closed form, hence it is a cocycle in
the Dolbeault-de Rham cohomology group.

Definition 2.1 (1st Chern Class). The class

c1(L) =
[

i
2π

Ω∇

]
∈ H2(X)

is called the 1st Chern class of the line bundle L.

Theorem 2.1. The 1st Chern class does not depend on the choice of the connections!

proo f . In the notations of the previous recall, given any two Hermitian metrics h1, h2 on L,
with curvature form Ω1, Ω2 respectively, the quotient

h1

h2
:=

hα
1

hβ
2

is independent of the trivialization {Uα, ψα}α∈Λ of L, thus it is a well-defined positive function
eρ for some real smooth function ρ, the formula h2 = eρh1 yields

Ω2 = ∂̄∂ρ + Ω1

hence we have [
i

2π
Ω1

]
=

[
i

2π
Ω2

]
�

Remark. There is another more algebraical way to define the Chern class.
We denoted by O∗

X the sheaf of holomorphic functions without zeros, and Z the constant
sheaf, then we have the short exact sequence of sheaves:

0 −→ Z −→ OX −→ O∗
X −→ 0

it will induce the long exact sequence on the level of sheaf cohomology groups, in particular,
we will have the connecting boundary:

δ∗ : H1(X,O∗
X) −→ H2(X, Z)

the later cohomology group is naturally isomorphic to the 2nd de Rham cohomology with
coefficient in Z, and since

Pic(X) ∼= H1(X,OX)

we can define the Chern class c1(L) of a line bundle L ∈ Pic(X) as the image under δ∗, i.e.

c1(L) := δ∗(L) ∈ H2(X, Z)

Example. For X = P1, we have H2(P1, Z) ∼= Z, the Chern class of the line bundle O(n) is
just n.
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2.2 Positivity of a Line Bundle
Definition 2.2. We say a real (1, 1)−form ω on X is positive if for any x ∈ X and all
non-zero v ∈ (TxX)R, one has

ω(v, Jxv) > 0

where Jx is the almost complex structure induced by the complex structure on X.

Definition 2.3 (Positivity). A line bundle L is positive if there exists a metric h on L such
that the curvature form Ωh is a positive (1,1)-form.

Theorem 2.2. A line bundle L is positive if and only if its 1st Chern class can be represented
by a positive form in H2(X).

For the detailed proof, see [1].

Example. The line bundle OPn(1) is positive.
In fact, we shall first do this on its dual bundle, as the notation used above, we assume a local
trivialization on Uα of OPn(−1) is given by

ψα := ([z0, ..., zn], zα)

now, define the Hermitian metric on OPn(−1) locally via

hα =
1
zα

n

∑
i=0

|zi|2

Then the curvature form on OPn(−1), denoted by Ω∗ is given by

Ω∗|Uα = ∂̄∂ log

(
1

|zα|2
n

∑
i=0

|zi|2
)

= ∂̄∂ log

(
n

∑
i=0

|zi|2
)

Then the curvature form on OPn(1), denoted by Ω, is −Ω∗, hence

c1(OPn(1)) =

[
− i

2π
∂̄∂ log

(
n

∑
i=0

|zi|2
)]

=

[
dd̄ log

(
n

∑
i=0

|zi|2
)]

which is the (1,1)-form associated to the Fubini-Study, metric on Pn and hence positive.

Theorem 2.3. On a compact Kähler manifold X, any ample line bundle L is positive.

proo f . Since L is ample, there exists some integer k > 0 such that L⊗k is very ample, i.e. the
mapping

ϕL⊗k : X ↩→ Pn

is embedding, since OPn(1) is positive, hence there exists a positive Hermitian metric on it,
and the pull-back metric gives rise to a positive Hermitian metric on L⊗k, and the k−th root
metric will give a desired positive metric. �

Conversely, any positive line bundle will be ample, this is the part of the Kodaira embedding
theorem.
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2.3 Kodaira Vanishing Theorem
Theorem 2.4 (Kodaira-Akizuki-Nakani Vanishing Theorem). If L is a positive line bundle,
on a complex compact manifold X, then for all p + q > 0, we have

H(p,q)(X, L) = Hq(X, Ωp
X ⊗ L) = 0

In particular:
Hq(X, KX ⊗ L) = 0

for all q > 0, where KX is the canonical line bundle over X.

For a detailed proof, I’d like to refer [1].
As an application, there is a low-dimensional version of the Kodaira embedding theorem:

Theorem 2.5. Every compact Riemann surface can be embedded to a projective space.

proo f . We will mainly show that for any divisor D with degree deg D ≥ 2g + 1 on a compact
Riemann surface X with genus g is very ample. Theorem 2 will be a powerful tool.
We notice that

H1(X,OX(D)⊗ I2
x) = H1(X, D − 2[x]) = H1(X, KX + (KX − 2[x]− KX))

and since
deg(D − 2[x]− KX) = deg D − 2 − 2g + 2 ≥ 1

the line bundle OX(D − 2[x]− KX) is positive, thus by Kodaira vanishing theorem,we have:

H1(X,OX(D)⊗ I2
x) = 0

Analogously we can show H1(X,OX(D)⊗ Ix) = 0, hence by theorem 2, D is very ample. �

However, for high-dimensional manifold X, the ideal sheaf Ix may not be an invertible sheaf,
this method lost its power on this case, but we can replace the point by a divisor, the so called
the exceptional divisor after a topological surgery: the blowing up.

3 Blowing Up
We will mainly discuss about the blowup X̃ at a point x ∈ X, which will be the main technique
appeared in the proof of Kodaira embedding theorem.

3.1 Blow Up at a Point
We first start from Cn, let U be a neighbourhood of 0 in Cn with local coordinate z1, ..., zn.

Definition 3.1. Define:
Ũ = {(z, ℓ) ∈ U × Pn−1|ziℓj = zjℓi}

with a projection:
π : Ũ −→ U

(z, ℓ) 7→ z

Remark. Ũ has some equivalent characterizations:

Ũ =

{
(z, ℓ) ∈ U × Pn−1

∣∣∣∣rank
(

z1 ... zn
ℓ1 ... ℓn

)
≤ 1

}
= {(z, ℓ) ∈ U × Pn−1|z = (z1, ..., zn) ∈ ℓ = [ℓ1, ..., ℓn]}
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Figure 2: Ũ

Proposition 1. By our definition we have
(1). E := π−1(0) ∼= Pn−1, which is called the exceptional divisor.3
(2). The restriction of the projection:

π|Ũ\E : Ũ \ E
∼=−→ U \ {0}

is a biholomorphism.

Definition 3.2. If we denoted by φ := π|Ũ\E, we call

C̃n :=
(
Cn \ {0}⨿ Ũ \ E

) /
∼φ

the blowing up of Cn at the origin.

Proposition 2. This definition is independent of the Choice of U, hence it is well-defined.

proo f . For (z′1, ..., z′n) := ( f1(z1), ..., fn(zn)), we can see that the diffeomorphism

f : Ũ \ E −→ Ũ′ \ E′

may be extended via

f (0, ℓ) = (0, ℓ′) ℓ′i =
n

∑
k=1

∂ fi

∂zk

∣∣∣∣
0
ℓk �

Remark. (1). It is possible to define the blowup at a point x on any complex manifold X.
(2).We can see that the exceptional divisor E can be identified with P(T(1,0)

x X), via

(0, ℓ) 7→
[

n

∑
k=1

ℓk
∂

∂zk

]

(3).Next, we will describe the local coordinate of the blown up.
On Ũ = {(z, ℓ) ∈ U × Pn−1|ziℓj = zjℓi},we define the local charts Ũi := Ũ \ {ℓi = 0}, we
define:

φi : Ũi −→ Cn

(z, ℓ) 7→
(

z1

zi
, ...,

zi−1

zi
, zi, ...,

zn

zi

)
:= (zi

1, ..., zi
n)

we have the coordinate transformation:
3This divisor is defined as the Weil divisor, where E is a hypersurface in X̃, the manifold after the blowup, the

divisor take value 1 at E and zero and any other hypersurfaces.
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φi ◦ φ−1
i |Ui∩Uj(z

i
1, ..., zi

n) =

(
zi

1

zi
j
, ...,

zi
j−1

zi
j

, zi
jz

i
i, ...,

1
zi

j
, ...,

zi
n

zi
j

)
Hence locally we have

π|Ũi
(zi

1, ..., zi
n) = (zizi

1, ..., zizi
n)

DE|Ũi
= (zi)

Since the exceptional divisor DE|Ũi
= (zi), hence the transition function of the line bundle

OX̃(E) is given by

gij =
zi

zj
=

ℓi

ℓj
: Ũi ∩ Ũj −→ C

So we can realize the line bundle OŨ(E) by identifying the fiber at point (z, ℓ) as the complex
line passing through (ℓ1, ..., ℓn), more particularly, the restriction of this line bundle on E is
exactly the tautological line bundle

OE(E) = OPn−1(−1)

(4). Under our identification P(T(1,0)
x X) = E, we will have

H0(E,OE(−E)) = T∗(1,0)
x X

Moreover, we have the following diagram commutes:

..
..H0(U, Ix) . ..H0(Ũ,OŨ(−E))

. ..T∗(1,0)
x X = H0(E,OE(−E)) .

.

π∗

.d .
|E

In the viewpoint stated in [7], the local analytic behavior of a function at x is magnified to the
global behavior of X̃.

3.2 Line Bundles on a Blown Up
Theorem 3.1. If L is a positive line bundle over a complex manifold X, then there exists a
positive integer k > 0 such that for any n ∈ Z the line bundle π∗Lk ⊗OX̃(−nE) is a positive
line bundle.

proo f . We first construct a metric on OX̃(E) by the uniform decomposition.
(1).Let h1 be the metric on OŨ(E) restriction of the standard metric in Cn passing through
(ℓ1, ..., ℓn).
(2).Let h2 be the metric on OX̃\E(E) such that h2(σ) ≡ 1, where σ ∈ H0(X̃, E) is a global
section of OẼ(E) with (σ) = E.
(3). For ϵ > 0, Uϵ := {z ∈ U|||z|| < ϵ} and Ũϵ := π−1(Uϵ). Let ρ1, ρ2 be a partition of unity
to the cover {Ũ2ϵ, X̃ \ Ũϵ} of X and h be a global Hermitian metric given by

h = ρ1h1 + ρ2h2

Then let’s compute the positivity of this metric.
(a). On X̃ \ Ũ2ϵ, ρ2 ≡ 1, hence h2(σ) ≡ 1, i.e. in the trivialization above hα|σα|2 = 1, and

c1(E) = −dd̄ log
1

|σ|2 = 0
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since log 1/|σ|2 is harmonic.
(b). On X̃ \ Ũ2ϵ, ρ2 ≡ 0, we denote

π′ : Ũ −→ Pn−1

(z, ℓ) 7→ ℓ

then
c1(E) = dd̄ log ||z||2 = −(π′)∗ωFS

hence the pull-back π′∗ωFS of the fundamental (1,1)-form associated to the Fubini-Study
metric under the map π′ and c1(E) is semi-positive on Ũϵ \ E.
(c). On E, we have, by continuity form previous remark:

−c1(E)|E = ω > 0

So, to sum up:

c1(−E) =


0 X̃ \ Ũ2ϵ

≥ 0 Ũϵ

> 0 T(1,0)
x E ⊂ T(1,0)

x X̃

Let (L, hL) be an Hermitian positive line bundle over X̃, then

c1(π
∗L) = π∗c1(L)

For any x ∈ E and v ∈ TxX̃ we have

c1(π
∗L)(v, v̄) = c1(L)(π∗v, π∗v) ≥ 0

where the equality holds if and only if π∗v = 0. Hence we have

c1(π
∗L) =


≥ 0 everywhere
> 0 X̃ \ E
> 0 T(1,0)

x X̃/T(1,0)
x E

So we can see that

c1(π
∗Lk ⊗ (−E)) = kc1(π

∗L)− c1(E)

is positive on Ũϵ and X̃ \ Ũ2ϵ for ϵ small enough. Since Ũ2ϵ \ Ũϵ is relatively compact, −c1(E)
is bounded below and c1(π

∗L) is strictly positive, then for k big enough, π∗Lk ⊗OX̃(−nE) will
be a positive line bundle. �

Theorem 3.2. Let KX denote the canonical line bundle over X, we have

KX̃ = π∗(KX)⊗OX̃((n − 1)E)

For a detailed proof I’d like to refer to [7].
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4 Kodaira Embedding Theorem
Theorem 4.1 (Kodaira Embedding). A line bundle L over a compact Kähler manifold X is
positive if and only of it is ample, hence if X admits a positive line bundle, then X is projective.

proo f . The ampleness implies the positivity is stated in theorem 2.3, so it suffices to show if L
is positive, then there exists some integer k > 0 such that

ϕLk : X ↩→ P(H0(X, Lk))

is an embedding, as we discussed in section 1.2, that entails to show that:
(1). The restriction map:

H0(X, Lk) −→ H0(X,Lk
x ⊕Lk

y)

is surjective for all x ̸= y ∈ X.
(2). The differential map:

dx : H0(X, Lk) −→ H0(X,Lk
x ⊗ T∗(1,0)

x X)

is surjective for all x ∈ X.
We’d seen form theorem 2.5, the theorem is right for compact Riemann surfaces, however, for
high-dimensional complex manifold, the ideal sheaf Ix may no longer be invertible, hence the
technique lost its power here, fortunately, we can use the blowing up.
Let π : X̃x,y −→ X be the blowup of X at two distinct points x, y, the exceptional divisors
denoted by Ex = π−1(x), Ey = π−1(y) with respect to the point x, y, and let E = Ex + Ey, we
will have the following diagram commutes:

..

..H0(X, Lk) . ..H0(X̃, π∗Lk)

. ..H0(X,Lk
x ⊕Lk

y) = H0(E, π∗Lk) .

..H1 (X̃, π∗Lk ⊗OX̃(−E)
)

. .

.

π∗

.

|x,y

.
|E

Indeed:
(a). π∗Lk is trivial along Ex and Ey, in fact:

π∗|Ex = π∗|π−1(x) = π∗(Lk|x)
= π∗({x} × Lk

x) = Ex ×Lk
x

Similarly we have π∗Lk|Ey = Ey ×Lk
y, hence

H0(X,Lk
x ⊕Lk

y) = H0(E, π∗Lk)

(b). π∗ : H0(X, Lk) −→ H0(X̃, π∗Lk) is an isomorphism, in fact, π is a biholomorphism away
from E, π∗ is injective, by Hartogs theorem [1], any holomorphic section of π∗Lk on
X̃ \ Ex ∪ Ey ∼= X \ {x, y} can be extended to a holomorphic section of Lk on the whole X, hence
π∗ is surjective.
(c). The restriction map |E : H0(X̃, π∗Lk) −→ H0(E, π∗Lk) lies in the long exact sequence
induced by the short exact sequence:

0 −→ π∗Lk ⊗OX̃(−E) −→ OX̃(π
∗Lk) −→ OE(π

∗Lk) −→ 0
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Hence the the map (1) is surjective if and only if H1 (X̃, π∗Lk ⊗OX̃(−E)
)
= 0, in fact, by

theorem 3.2 and 3.1, we have

π∗Lk ⊗OX̃(−E) = π∗Lk ⊗OX̃(−E)⊗ KX̃ ⊗ K−1
X̃

= π∗Lk ⊗OX̃(−E)⊗ KX̃ ⊗ (π∗KX ⊗OX̃((n − 1)E))−1

= KX̃ ⊗
(

π∗Lk1 ⊗OX̃(−nE)
)
⊗
(

π∗(Lk2 ⊗ K−1
X )
)

for some k > k1 + k2 chosen suitably such that the line bundles π∗Lk1 ⊗OX̃(−nE) and
π∗(Lk2 ⊗ K−1

X ) are positive, then applying Kodaira vanishing theorem (theorem 2.4) we have

H1
(

X̃, π∗Lk ⊗OX̃(−E)
)
= 0

Similarly for the surjectivity of (2), we can construct the following commutative diagram:

..

..H0 ((X, Lk ⊗ Ix
)
) ..H0 (X̃, π∗Lk ⊗OX̃(−E)

)
. ..H0

(
X,Lk

x ⊗ T∗(1,0)
x X

)
= H0 (E, π∗Lk ⊗OE(−E)

)
. ..H1 (X̃, π∗Lk ⊗OX̃(−2E)

)
.

π∗

.

dx

.
|E

Indeed:
(d). Since π∗Lk is trivial along E, we have

H0
(

E, π∗Lk ⊗OX̃(−E)
)
∼= H0(E, π∗Lk)⊗ H0(E,OE(−E))

= H0(X,Lk
x)⊗ T∗(1,0)

x X

= H0
(

X,Lk
x ⊗ T∗(1,0)

x X
)

(e). The pull back π∗ : H0(X, Lk ⊗ Ix) −→ H0(X̃, π∗Lk ⊗OX̃(−E)) is an isomorphism. In
fact, holomorphic sections of Lk on X vanishing at x corresponds to the holomorphic sections
of π∗ vanishing along E.
(f). The restriction map

|E : H0
(

X̃, π∗Lk ⊗OX̃(−E)
)
−→ H0

(
E, π∗Lk ⊗OE(−E)

)
is sited in the long exact sequence induced from the short exact sequence:

0 −→ OX̃(−2E)⊗ π∗L −→ OX̃(−E)⊗ π∗L −→ OE(−E)⊗ π∗L −→ 0

Hence the differential map dx is surjective if and only if H1 (X̃, π∗Lk ⊗OX̃(−2E)
)
= 0, like in

(1), we can apply the Kodaira vanishing theorem to deduce it. �
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