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ABSTRACT

We studied the symplectic structure on the moduli space M*(A) of meromorphic
connections on trivial bundles over P!, and proved it is a symplectic quotient of some
coadjoint orbits, hence it inherits a symplectic structure.

Then, inspired by the Stokes phenomenon of meromorphic linear ordinary differen-
tial equations, we also investigated the Stokes data of the meromorphic connections,
namely, the Stokes representation of a groupoid T, we then studied the moduli space
of the Stokes representations, and proved the Riemann-Hilbert correspondence in the
case of degree zero bundles, i.e, the moduli space of meromorphic connections on degree
zero bundles over P!, denoted by MO(A), is isomorphic to the degree zero-component
of the moduli space of Stokes representations, denoted by MO(A).

Motivated by Atiyah and Bott’s work, we obtained the moduli space M°(A) from
the moduli space of C*° flat connections with poles, this gives a symplectic structure
on My(A).

Finally, we showed Riemann-Hilbert correspondence is symplectic.

Key Words: Symplectic Geometry; Monodromy; Stokes Matrices; Meromorphic

Connections
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Notation

the collection of anti-Stokes directions
the data of irregular/formal type near each pole q;
a diagonal matrix of meromorphic functions on C
with pole only at z = 0 and has no holomorphic part
the collection of C'*° connections with poles
on the divisor D and with irregular type A
the collection of flat C'*° singular connections
the bundle automorphisms of £
the subgroup of G}, with constant equals to identity
the Lie algebra of By
the ring of formal power series
the ring of convergent power series
an effective divisor on P!
the differential map of f at p
a complex vector bundle of rank n on P!
a generic meromorphic connection on F
with formal type A
a generic meromorphic connection on F with
formal type A and compatible framing g
the formal gauge transformation
the gauge transformation group of trivial bundle
the subgroup of G containing the elements with taylor
expansion equals to identity
the data of compatible framing near each pole a;
the groupoid induced by some A
the (k — 1)—jet group
the Lie algebra of Gy
general linear group
the general linear algebra, the Lie algebra of GL,(C)
the general linear group with entries in C[z]
the general linear group with entries in C{z}
the moduli space of pairs (A, F)
Laurent map defined by taking Laurent
expansion at the pole a;

the data of the exponents of formal monodromy



M(A) the moduli space of all generic meromorphic connections
(E, V) with formal type A
M(A) the extended moduli space of all generic
meromorphic connections (F,V, g) with irregular type A
M*(A) the moduli space of gneric meromorphic connections
on trivial bundles with formal type A
M*(A) the extended moduli space of meromorphic connections
on trivial bundles with irregular type A
MO(A) the extended moduli space of meromorphic connections
on degree 0 bundles with irregular type A
M(A) the moduli space of Stokes representations of the
groupoid determined by A
MO(A) the moduli space of degree 0 Stokes representations of the
groupoid determined by A

@) the sheaf of holomorphic functions
Op the sheaf of meromorphic functions with poles on D
O; the coadjoint orbit of the jet group Gy, containing ‘A°
Oi the extended coadjoint orbit
Q(V) the curvature of a connection V
Qr the sheaf of singular smooth r—forms with poles on D
Sect; the i—th Stokes sector
S/eai the 1—th super-Stokes sector

Stog (A°) the group of Stokes factors associated to the direction d

¥ <F ) the re-summation (Borel-Laplace) of F' on some Stokes sector

S/y\st (AY) the collection of pairs (A, F ) where A = F'[A°)]



0 Introduction

It has been a long history in studying the moduli spaces derived from the Riemann
surfaces, for example, the moduli space of complex structures, the moduli space of stable
holomorphic vector bundles, the moduli space of representations of the fundamental group
of a Riemann surface, etc. All these moduli spaces have complex structures, however, these
structures highly depend on the complex structure of the underlying Riemann surface.

Goldman in [Gol84] showed that the symplectic structure on the moduli space of fun-
damental group representations just depends on the topology of the Riemann surface, which
is also called by “the symplectic nature” of the representations. So, it is natural to ask,
whether other moduli spaces will have the symplectic nature?

In [ABS83], Atiyah and Bott found the symplectic nature of flat connections on the prin-
cipal bundles over a Riemann surface. In this thesis, we will discuss an extended version of
Atiyah-Bott’s framework—the symplectic nature of meromorphic connections on holomor-
phic bundles. Although most of the results remain true on an arbitrary compact Riemann
surface, most of our works will be discussed over the complex projective line P! for conve-
nience.

To be specific, a key result is [Boa99]:

(1). The moduli space M*(A) of generic meromorphic connections with formal type

A ={Ay, ..., A} on Pt x C" is isomorphic to the symplectic quotient:
M*(A) 201 X ... x Oy, JGL,(C)

(2) The extended moduli space M*(A) of generic meromorphic connections with irreqular
type A = {Ay, ..., A} and compatible framing g = (g1, ..., gm) on P! x C" is isomorphic to
the symplectic quotient:

M*(A) = Oy X ... X Oy JGLn(CT)

As another approach, there is a more topological aspect of meromorphic connections.
Recall that a meromorphic connection can be locally regarded as a linear ordinary differen-
tial equation, i.e, a meromorphic linear system. According to Riemann-Hilbert correspon-
dence—there is a 1-1 correspondence between the Fuchsian systems and the monodromy
representations of the fundamental group. However, for non-Fuchsian systems, that is the
order of the poles of the coefficient matrix is higher than 1, the monodromy cannot describe
the behavior of the solution of a system completely, there is more deeply phenomenon, called
the Stokes phenomenon.

The Stokes phenomenon arises from the multi-summability of a divergent series. To be

specific, for linear systems dy = Ay, dy = A%, if A is formally gauge equivalent to A°, i.e



there exists a formal gauge transformation F' € GL,(C[z]) such that
FlA] = (dF) Fl 4 FAF~ = A°

then the solutions of A4 are differed by a left multiplication of F' to the solutions of A°. In order
to obtain the convergent solutions, one can do the re-summation of those formal solutions,
for example, the Borel-Laplace transformation [SM10], however, the new solution obtained
by the re-summation process may only converge in some sectorial neighborhoods around the
poles of A°, and on the overlap of two different sectors, the solutions can be very different,
they will be differed by a multiplication of a invertible constant matrix, such matrices are
called the Stokes factors, they are completely invariants of a linear ODE [VdPS12].

Similar to the monodromy representations of the fundamental group, there is a more
general notion, called the Stokes representation of a groupoid, and in this case, the Riemann-
Hilbert problem is asking, does there exists a 1-1 correspondence between the meromorphic
linear systems and the Stokes representations of the underlying groupoid?

In this thesis, we will study the moduli space of the Stokes representations M (A).
Then, the Riemann-Hilbert correspondence in the case of degree 0 bundles will be given,
that is [Boa99]:

The extended moduli space MO(A) of meromorphic connections on degree 0 bundles
with irreqular type A is isomorphic to the degree 0 component of ]\7[0(A). This isomorphism
is called the Riemann-Hilbert map.

As the third approach to meromorphic connections, we will generalise Atiyan-Bott’s
framework. We will consider the moduli space of C'*™ flat singular connections on C'*°-trivial
bundles, denoted by Ag(A) / Gi, this moduli space is surprisingly isomorphic to M°(A).
Following Atiyah and Bott [ABS83], the moduli space Ag(A) /G1 is actually the symplec-
tic quotient of the Hamiltonian group action of G = GL,(C™(P")) on Ap(A). Hence by
Riemann-Hilbert correspondence, M°(A) and My(A) both inherit a symplectic structure.

Finally, if we restricted the Riemann-Hilbert map to M*(A), we will show that this map

is in fact symplectic. The key story is involved in the following commutative diagram [Boa99]:

Or % -+ % Oy JGLn(C) —==5 N*(A) — 7 Np(A)

1%
t
2

The arrangement of this thesis is as follows:
Chapter 1 will give a quick review of some necessary background materials, including
the notions of meromorphic connections, Stokes matrices, Lie groups and their actions,

symplectic geometry, etc.



In chapter 2, we will give the symplectic structure on the moduli space of meromorphic
connections by establishing the isomorphism between M*(A) and the symplectic quotient
O1 X -+ X Op,//GL,(C), the main results are Theorem 2.1 and Theorem 2.2.

Then, in chapter 3 we will study the Stokes data of the meromorphic connections. First
of all, we will introduce the notion of Stokes representations, then, we will define the moduli
space of the Stokes representations, M (A), and we will show that two connections are in the
same equivalent class if and only if they induce the equivalent Stokes representations, this is
the one side of Riemann-Hilbert correspondence. At last, we will give an explicit description
of M(A). The main results are Theorem 3.1 and Theorem 3.2.

Chapter 4 will introduce the third approach to the meromorphic connection. First, we
will introduce the basic notion of C'**° singular connections with poles on D on a C'*° trivial
vector bundle, we will see the moduli space of meromorphic connections on degree 0 bundles
is actually isomorphic to the moduli space of flat connections Ag(A)/Gy, the latter is also
isomorphic to the moduli space of degree 0 Stokes representations MO(A), which induces
the Riemann-Hilbert correspondence on degree 0 bundles. At last, we will give a symplectic
structure on the moduli space Ag(A)/G; by a similar method of Atiyah-Bott, which shall
give a symplectic structure on MO(A) as well. The main theorems are Theorem 4.2, Theorem
4.3 and Theorem 4.4.

In chapter 5, we will show the Riemann-Hilbert map is actually symplectic, the main

theorem is Theorem 5.1.



1 Background Materials

1.1 Meromorphic Connections

Although the majority of the discussion will be taken place on the trivial bundle over
P!, we still need some general settings. Now, let X be a compact Riemann surface, F is a
holomorphic vector bundle with rank n, D = ka1 + ... + k,,a,, > 0 is an effective divisor on

X in which each k; > 0 and a; € X, which will contain the information of poles.

Definition 1.1 (Meromorphic Connection [GH14]). A meromorphic connection with poles

on the divisor D (each a; is a pole of order k;) is a map:
V:E—ERK(D)
satisfying Leibniz rule: for any f € Ox and s € £, we have
V(f-s)=(df)®s+ fVs

Here & is sheaf of local sections of E, K(D) is the sheaf of meromorphic 1-forms with
prescribed poles on D, Oy is the sheaf of holomorphic functions on X.

Next, we will give a local depiction of a meromorphic connection.

Remark 1.1. For a local trivialization ¢; : E|y, — U; x C" near each pole a;, V can be

expressed by Laurent expansion
V=d-"'A

Ay, A
:d—( Bt 21+ZAO—I----)dz

zki

where “A; € End(C™). Hence locally, it is a matrix-valued meromorphic 1-form.

The second part in right hand side will sometimes be denoted by PP, + HP;, which
stands for the principal part and holomorphic part in a Laurent expansion respectively.
Besides, Ay, /2% + -+ + 1A,/2? is called the irregular part, ‘A; is called the residue
part, these terminologies arise form the analytical theory of linear ordinary differential
equations [BJL79].

Definition 1.2 (Residue of a Meromorphic Connection). In the local trivialization of E
near the pole a; defined above, we define the residue of a meromorphic connection V at the
pole a; to be the trace of ‘A:

Res,, (V) := Tr ("A)

10



We define the residue of V to be the sum of all residues at each pole a;:
Res(V) := ) Tr (*A)
i=1

Remark 1.2. It is not hard to see that the trace of ‘A doesn’t depend on the choices of
local trivialization. Indeed, if we choose another trivialization ; : E|y, — V; x C", where
a; € V; N U;, then the map

gi(z) = ¢iop; ' : U;NV; — GL,(C)

defines a matrix-valued holomorphic function, and the expressions in different local

trivialization will be differed by a gauge transformation:

‘A" = gi(2)'Ag; " (2) + (dgi)g; ™!

Since the first part of right hand side doesn’t change the eigenvalues and diagonalis-
ability, the second part is holomorphic which will never impact on the principal part, this
definition is well-defined. W

The meromorphic connections are not permitted to be appearing arbitrarily, it was
controlled by the properties of the vector bundle F, a theorem of Pereira [Per22] asserts
that, the Chern class determined by the residue divisor of a flat meromorphic connection
V on a line bundle L over a compact complex manifold X must equal to the negative first

Chern class of the line bundle:
c(Res(V)) = —c1(L) € H*(X,C)

For low-dimensional case, especially for X = P!, V is identically flat, and the proof will be

easier.

Lemma 1.1. Let V be a meromorphic connection on a holomorphic line bundle L over P*,
which has poles on the divisor D = ). k;a;, then residue of V equals to the negative degree
of the line bundle L:

deg L = —Res(V)

proof. Let
Uy = {[z,y] € Pz #0}  Up = {[z,y] € P'|y # 0}

be the standard open cover on P!, the transition function of L is given by [For12]

T deg L
g12lz,y] = (;) :UNU, — C*

11



Without the loss of the generality, we can assume all poles of V lie in Uy, i.e, ay, .., a,, € U;.
Now, we choose a nowhere vanishing section of L on Uy, namely oy € I'(Uy; L), and oy

a section of L on U, determined by
09 = (1207 . U, — L (*)

hence no hard to see oy is also nowhere vanishing on Us, thus we can find two forms 7,7, €
K(D) such that
Vo =m®o1 Voy =1 ® 0y

Hence by (%), we have

dgi2

=M=

g12
As we assuming U; containing all poles of V, hence 7, is in fact a holomorphic 1-form, and
11 has the same residue as V, i.e, Resn; = ResV.

Now, we use the coordinate z = z/y on U; N Us, and consider the equality

deg L
z

m="7"2—
by taking residues on both sides yields:
Res(V) = Res(m) = —deg L [

Remark 1.3. This result remains true for a rank n > 2 vector bundle E over P!, in fact,
we can consider the induced connection on the determinant line bundle A" E, and observe

that the residue will not be changed.

Next, we will define a kind of meromorphic connections with a good property, namely

generic, which will play a vital role in the rest of this thesis.

Definition 1.3 (generic connection [Boa99]). A meromorphic connection V is generic, if at

each a;, the leading coefficient Ay, is diagonalisable and the eigenvalues are

distinct k; > 2
distinct (modZ) k; =1

Remark 1.4. Again, this definition is independent of the choice of local trivialisation (cf.
Remark 1.2) hence well-defined.

Now, since the generic connection is of our interests, the leading coefficient is always
diagonalisable and having enough distinct eigenvalues, we need to know how to “change” a

generic connection into the one with diagonal leading coefficient:

12



Definition 1.4 (Compatible Framing [Boa99]). A compatible framing at the pole a; asso-

ciated to a generic connection V is an isomorphism
‘g E,, — C"

such that the leading coefficient of V is diagonal along any local trivialization which extends

%

g.

Again, locally, it means that there is an ‘g € GL,(C) such that gA, ‘g~ is diagonal.

It is natural to give an “idol” among those generic meromorphic connections, this idol

shall have a very nice form—it is diagonal for every term.

Definition 1.5 (Nice Formal Form [Boa99]). At each pole a;, a nice formal form, which
denoted by d — ‘A°, is a meromorphic connection together with a local trivialization such

that the local expression is diagonal and has no holomorphic part:

] iAO_ z’AO
ZAOZ( - )dz

zki z

= d(Q) + N
z
where ‘@ is a diagonal matrix of meromorphic functions and ‘A° is a diagonal constant
matrix.
A connection V with compatible framing ‘g at a; is said to have irregular type ‘A°
if %g extends to a formal trivialization near a; in which the difference of V and d — 'A% is a

matrix of 1-forms with just simple pole.

Remark 1.5. Again, we may assume V = d — A in some local trivialization near a;, it has

a irregular type d — “A° implies there exists a g(z) € GL,(C[z]) with g(a;) = g such that

. _ i i dz
gAg~" + (dg)g " =d('Q) + A=

these ‘A are called the exponents of formal monodromy.

Now, we denoted by A = (1A% ..., ™A%) the data of irregular types near each pole a;,
and g = (g, ..., ™g) the data of compatible framing.

The moduli space we will concern is defined as follows

Definition 1.6 (Moduli Space [Boa99]). (1) The moduli space of meromorphic connections
on F, denoted by Mg (A), is the set of gauge isomorphism classes of all generic connections

on E which are formal equivalent to A near each pole a;.

Mg (A) = {V generic : formal equivalent to A} /Aut(E)

13



(2) Similarly, the extended moduli space M £(A) is defined as the set of gauge isomor-

phism classes of all generic connections on F with irregular type A near each pole a;:
Mp(A) = {(V, g) generic : hasirregular type A viag} /Aut(E)

Here Aut(F) is the gauge transformation group of E (bundle automorphisms).

Remark 1.6. (1). In the rest part of this thesis, the most interesting case will be E =
P! x C, and those moduli spaces will be denoted by M*(A) and M*(A) respectively.
(2). The collection of all equivalent classes of pairs (F, V) will be denoted by M(A),

and for pairs (E,V, g) will be denoted by M(A).
(3). By Lemma 1.1, the moduli space Mg(A) is non-empty unless

m

Z Tr (iAO) = —deglt

=1

where ‘A is the residue part of the nice formal form ‘A% appeared in Definition 1.5, and the

extended moduli space Mpg(A) is non-empty unless

m

ZTr (ZA) = —degF

=1

where A is the exponents of formal monodromy of V, which appeared in Remark 1.5.

1.2 Stokes Matrices of Linear Ordinary Differential Equations

A very important case in ordinary differential equations is the linear case on the complex

plane:
dy = A(z)y

where A(z) is a matrix-valued meromorphic 1-form on C with poles ay, ..., ay,.

However, it is more interesting to let the linear ordinary differential equations be defined
at 0o, hence then, this differential equation is defined on the complex projective line P!, in
this sense, the study of meromorphic connections on P! is equivalent to study the local theory
of linear ODEs.

Different from the nonlinear equations, the solutions of a linear one will only have
singularities near the poles of A(z), the behavior of the solutions near these poles are very
interesting. A very significant invariant will be appeared near these poles, called the family

of Stokes matrices, it will be introduced in this section.

14



1.2.1 Stokes Matrices

We will assume our linear ODEs are generic (cf. Definition 1.3) and with only one pole

at 2 = 0. Let dy = A% be a diagonal generic meromorphic linear ODE, we can write A° as

A0 = dQ + A°Z
z

here @ is a diagonal matrix of meromorphic functions, A° is a diagonal constant matrix.

Now, write the entries of () in terms of Laurent expansions:

q1
q2

an

where ¢; € C{z}[1/%], define g;; to be the leading term of ¢; — ¢;, for example, if we write

_a b
G“=4G= g3t am T

then ¢;; = a/2""1.

Definition 1.7 (Anti-Stokes Directions [Boa99]). The anti-Stokes directions A C S! are the
directions d € S' such that ¢;;(z) € R for all z on the ray specified by d, for some 7.
Let d be an anti-Stokes direction, we define the following data of this direction:

(1). The roots of d are the ordered pair (ij) supporting d:
Roots(d) = {(ij) : ¢ij(z) € Rep, z € Ruge}

(2). The multiplicity Mult(d) is the cardinality of Roots(d).
(3). The group of Stokes factors associated to d is the group

Sto4(A°%) = {K € GL,(C) : K;; = &;; unless (ij) € Roots(d)}

Remark 1.7. It is not hard to find the following facts about the anti-Stokes directions:
(1). The Stokes group Stog(A°) is a unipotent subgroup of GL,,(C)
(2). The anti-Stokes directions A have 7/(k — 1) rotational symmetry, here k is the
order of the pole 0, i.e, if ¢;;(2) € R, then

/=1
Qij (z - e k-1 > € R

hence the number of all anti-Stokes directions r = |A| is divisible by 2k — 2, we denote
C=r/2(k—-1).

15



By the last item in the Remark 1.7, we can refer to an /—tuple
d == <d17 ceey dg) C A

of consecutive anti-Stokes directions as a half-period, the half-period will define an order of

the set {q1, ..., qn}:
¢ <q; < (ij)isarootofded

Lemma 1.2 ( [Boa99]). For each half-period d, there exists a permutation matrix P which

can upper /lower-triangularize all matrices in the group Stog(A°) for any d € d.

proof. Indeed, define m to be a permutation of the set {1,...,n}:
(i) <7(j) © ¢<¢g < (ij)isarootofded

define P = (P);;, where (P);; = 0r(;);, this is the desired permutation matrix. W

AR

Moreover, we have a much stronger statement:

Lemma 1.3 ( [BJL79]). (1). Let d = (dq, ..., d;) be a half-period, we have the isomorphism:

[ [ Stoa(A%) = PULP

ded
(Kla ...,Kg) —> Kg s KQKl

where Uy is the upper/lower-triangulated subgroup of GL, (C).
(2). If we label the rest of A as dgi1,...,d, in the positive order (anti-clockwise), we

have the isomorphism:
[ Stoa(4%) = (U, x U_)*

deA

(Kl, ceey Kr) — (Sl, ceey SQk,Q)
here S; = P_lKig s K(i—l)é—f—lp-
Example: We assume
A’ =d %
L
23
then g2 = vV—1/2%, q13 = (V-1 —1)/2%, qo3 = —1/2%, also ¢;; = —q;i, hence we can

determine all anti-Stokes directions in following picture:

All these 18 directions are of multiplicity 1, the Stokes group for the direction, d = /4

16



£
wl

(@)
E ()

jeny | -3 -z EANCE

The anti-Stokes directions of A

for instance, is the collection of all invertible matrices with the form
Stox (A°) = 1 € GL,(C)|x e C
4

Choose a half-period, namely d = {0,7/6,7/4}, the permutation matrix associated to
this half-period is

i)

I
o = O
o O =
_ o O

all matrices in [[,, Stog(A%) can be upper-triangularized via P.

1.2.2 The Local Moduli Space #H (A°)

Next, we shall focus on the Stokes matrices for the linear ODE that with formal type
A% We denote Syst (AY) the set of all linear ODEs with formal form A i.e:

Syst (4°) = {d — AJA = F [A’] , F € GL.(C[#]) }
here F[A°] represents for the gauge transformation on A°:

FlA) = (aF) P 4 PACF

17



Then, we will define another set which is larger than Syst(A°) (by considering the data of

formal gauge transformation F as well):

Definition 1.8 ( [Boa99]). Define
Syst (4%) = { (A, F) |4 € Syst (A°) , F € GL, (C[2]), A = P[]}

an element (A, F ) € Syst (A°) is called a marked pair.
Let G{z} = GL,(C{z}) acts by gauge transformation on S/y\st(AO), define:

H(A%) = Syst(A°) / G{z}

This H(A°) is the local version of the extended moduli space M(A), and an element
in H(A%) is a gauge equivalent class of linear ODEs which are formal equivalent to A°.

Next, we define a labelling convention of the anti-Stokes directions of A°. First, we
fixed a point p in one of the Stokes sectors bounded by two consecutive anti-Stokes rays,
label the first anti-Stokes ray when turning in a positive sense (anti-clockwise) from p as dj,

and label the rests as ds, ..., d,, denote
Secti = Sect(d,;, di+1)

to be the +—th sector, and

E ™ ™
Sectl- = Sect (dz — %—_2,di+1 + 2% 2)

the i-th supersector.

labelling convention

Lemma 1.4 ( [Boa99)). If F' € GL,(C[z]) is a formal transformation such that A = F'[A?]
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has convergent entries. Set the radius of the sectors Sect; and S/eal- to be less than the radius
of convergence of A, then the following statements hold:

(1). The formal transformation can be replaced by a convergent one, i.e, one can
determine an invertible matrix of holomorphic functions (in a canonical way) ;(F) €
GL,(O(Sect;)) on each sector Sect; such that

Si(F)[AY] = A

—

(2). %, (F ) can be analytically continued to the super-sector Sect;.
(3). For g € G{z} and t € T (the toric group T can be viewed as the diagonal subgroup
of GL,(C)), we have

> <gﬁ’t‘1> = g% <F> tt
The canonical method mentioned in the last lemma is called the Borel-Laplace trans-
formation [SM10].

Now, choose a branch of log z along d; and extend it in a positive sense across other
sectors. Recall that, if we write A° = dQ + A%dz/z, then the solution of the differential
equation dy = A% can be write as 22" e@ (in the given branch), and for any A = F [AY], the

solution of dy = Ay can be write as
Y, =3, (F) [AO} %R
on each sector Sect;, i = 1,...,7. We denote
kii= % (F) e (F) € GL, (O (Sect: N Sect 1))
Remark 1.8. x; asymptotic to 1 at 0 in the sector S/eai N S/e\ctl-,l, moreover:
Ki [AO} =AY
Definition 1.9. The Stokes factors of a linecar ODE (4, F) € Syst(A4°) are
K; = e~ QA K - M@ = 1.7

Lemma 1.5 ( [Boa99] [VdPS12]). (1). The Stokes factor K is constant and lies in the group
Stog, (A°) for each i.
(2). Stokes factors are the complete invariants of a linear ODE, i.e, (A, F) and (A', ")

are in the same equivalent class in H(A) if and only if they have the same Stokes factors.

proof. (1). To be simplified, we write Yy = 2A°eQ which is the fundamental solution
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of dy = A%, hence by remark 1.5, we have

dEK; =d (Yo ') ki - Yo+ Yy ' dry - Yo+ Yy 'k, - dYy
= — A, kYo + Yy R AYYG + Yy R Y
= — A% kYo + Yy i AYY, + Yo (A% — ki AY) Yy
_ (Yo_lAO _ AOYO_l) K Yo
=0

the last step comes from the fact that A and Y; are diagonal matrices.

Hence K; is a constant matrix. To see K; € Stog, (A°), by Remark 1.8, we know

_ _AO 0
e OKe? = 2 Ng2N — I,

—

as z — 0 within the intersection Sect; N S/e\cti_l, it forces the (m,n)—th entry of K; to be

(Kz)mn - 5mn

unless e~ — () as z — 0, this is equivalent to K; € Stog, (A°).

(2) follows directly from the 3rd statement in Lemma 1.4. W

Remark 1.9. By Lemma 1.2, for each Stokes group Stog, (AY), there exists a permutation
matrix P; such that all matrices in that group can be upper/lower-triangularized by P;, we

will call the upper/lower-triangular matrices
S; == BK P!

the Stokes Matrices of the ODE d — A = 0.
Combining with Lemma 1.2 and Lemma 1.4, we have

Lemma 1.6 ( [BJL79]). We have the isomorphism:
H(A%) = (Uy x U
|:A, ﬁi| — (Sl, ceny SQIC*Z)

where S; = P71K;--- K (i—1)¢4+1P, that is the product of all Stokes factors of [A, F] € H (A

in the i—th half-period in a converse order.

Remark 1.10. In the Galois theory of linear ODEs (i.e, the differential Galois theory),
the Stokes factors are the significant elements in the differential Galois group Gal (A, F >

of [A,F }, in fact, this group is a linear algebraic group generated by all Stokes matrices
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together with the differential Galois group of Gal (A°) [VdAPS12], that’s why we also call

them the “complete invariants” of a linear ODE.

1.3 Lie Groups Actions

In this section, we will introduce some basic notions about Lie group actions on mani-
folds. In general, groups are used to describe the symmetries of some objects, for example,
the dihedral group D,,, we can use the groups actions on a set to investigate the symmetries
of that set (and conversely, we can use one group acts on various sets to recover the structure
of the group, that is the idea of representation theory), sometimes, the symmetries of a set
is not discrete, the circle S! for instance, it has continuously symmetries, so we need to use
a kind of groups which admitted a “continuity” structure to characterise such symmetries,
that is the Lie Groups.

Definition 1.10 (Lie groups actions [Aud04]). Let G be a Lie group, M a smooth manifold,

a G—action on M is a group morphism
G — Diff(M)

where Diff(M) is the diffeomorphism group of M.

An action of G on M will be denoted by
GxM— M, (g,x)—g-x
Example 1. The Lie group G itself is a manifold, and G acts itself by left multiplication:
GxG— G, (g,h) — Lyh := gh
notice that the tangent map is actually an isomorphism between
(dLg-1),: T,G — g
hence
Lemma 1.7. The tangent bundle 7'G and cotangent bundle of a Lie group are both trivial:
TG=Gxg "G =G xg"
Example 2. G can also act on itself by adjoint action:

GxG— G, (g,h) — adyh = ghg™!
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notice that the differential map is an automorphism of the Lie algebra g of G:
Ad, = (dady). 19— 9
we call the map

Ad : G — GL(g), g (dady).
the adjoint representation of G on GL(g). Similarly, for every g € G, the adjoint action
also induces a representation of G on the dual Lie algebra g* by the cotangent map:

Ad*: G — GL(g"), g — Ad, = (dady);

where g — (dad,)} is the cotangent map of ady, this representation is called the coadjoint

action of G on g*.

If two elements in GG are very “close”, then we can “differentiate” this action, that yields

the notion of fundamental vector field.

Definition 1.11 (Fundamental Vector Field [Aud04]). If G acts on M, for any X € g, the
vector field defined by

d
X(z) = pr . (exptX) -z
is called the fundamental vector field of X, where exp : g — G is the exponential map.

Lemma 1.8 ( [Aud04]). The fundamental vector field of X € g associated to the adjoint
action on g is

X(Y) = [XY]
and the one associated to the coadjoint action is
(X(£),Y) = (& [V, X])
where X|Y € g, £ € g*, (-,-) is paring
(,):g"xg—R
proof. First, for adjoint action g, let X,Y € g, by definition, we have

(dadexp tX)e Y
t=0

d

dt
ay 4
dt|,_, ds
= [Xa Y]

(exptX)expsY (exp —tX)
s=0
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for the case of coadjoint action on g*, for any £ € g*, observe that

d

(X)) = %

d

<Ad2xp tX£7 Y>

t=0

— Ad_ opixY
dt —o <§7 ptX >

= y.X) n

In practice, we call the map
gx M — TM, (X,z) = X(x)

the infinitesimal action of G. When G is a connected compact Lie group, we have a good cor-
respondence property between Lie groups and Lie algebras, and some properties of G—actions

can be reduced to the properties of its infinitesimal actions.

1.4 Symplectic Geometry and Hamiltonian Lie Groups Actions
Definition 1.12 (Symplectic Manifolds [Aud04]). A differential manifold M is called sym-
plectic, if there exists a smooth non-degenerate closed 2—form w:

we: TeM x T,M — R

Here are several significant examples which will play an important role in this thesis.

Example 1 (cotangent bundle) For any smooth manifold M, its cotangent bundle T* M
has a natural symplectic structure, called the canonical symplectic form:
Suppose 7 : T*M — M is the projection of the cotangent bundle, for p = (z,£) € T*M,

we can define its cotangent map:
(dm)y - Ty M — Ty (T"M)
hence

ayp = (dm),§ = o (dm),

defined a 1—form on 7™M, it is called the Liouwville 1-form or tautological 1-form, then the
formula

w=da

defined a symplectic form on T*M. If we choose a coordinate chart U C M, the coordinate
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on T*U denoted by x4, ..., x,, &1, ..., &n, then the Liouville 1-form can be locally expressed by

o= En:&dxi
i=1

hence the canonical symplectic form is
n
i=1

There is a special case for the cotangent bundle, that is the cotangent bundle of a Lie
group G, by Lemma 1.7, TG is trivial, and it is important to write down this canonical

symplectic form in terms of the operations on Lie groups and Lie algebras.

Lemma 1.9 ( [Boa99]). The canonical symplectic form on 7*G = G x g* at the point
(9,&) € T*G is given by

wige) (X, 0), (Y,9) = (6, Y) — (¥, X) — (& [X, Y])

proof. Recall that, if « € Q'(M) is a 1-form on M, then for any vector field
X M — TM, a(X) is a sooth function on M, and the exterior differential of « is
defined by

(da)(X,Y) = X(a(Y)) = Y (a(X)) — a([X, Y))

now, we use the left-trivialization to identify the tangent space T(,¢)T*G with g x g*,
choose (X, ¢) € g x g*, and the Liouville 1-form on T*G is given by

Oé(g,g) (X7 (b) = <€7X>

now for another (Y,4) € g x g*, we have

wige) (X, 0), (Y, 1)) = (da)((X, 9), (Y, ¢))
= (X7 ¢)(9:5) (Oé(Y, ¢)) - (Yv, ¢>(g,£)(@<X7 (b)) - CK([(X, (b)? (Ya Q/J)])
:<¢7Y>_<¢7X>_<€7[X’Y]> u

Definition 1.13 (Hamiltonian Action, Moment Map [Aud04]). A Lie group G—action on a

symplectic manifold M is called Hamiltonian, if there exists a map

w:M— g
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such that for any X € g, the function defined by
px(z) = (u(z),X) : M — R
satisfies the condition
Lxw = —dpux

Lemma 1.10 (Symplectic Reduction [Aud04]). If 0 € g* is a regular value of the moment
map p, then there is a symplectic structure on the quotient space u~'(0)/G, this space is
called the symplectic reduction of M, this quotient is called the symplectic quotient, denoted
by M )G
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2 Meromorphic Connections on Trivial Bundles over
Pl

In this section we will give and prove the existence of the symplectic structure on the
moduli space defined in Definition 1.6, the main tool comes from the theory of moment maps
in symplectic geometry [Aud04]. From now on, we will concentrate on the trivial bundle
Pt x C".

2.1 Symplectic Nature of the Moduli Space

We first take a glance at what have been moduled by the gauge transformation group.

To be simplify, we assume a meromorphic connection has an expression near some pole:

V:d—A:d—(é—i-“'—l-é—l—HP)dz
z

ok
where HP means the holomorphic part, V is formal equivalent to A° implies that there
exists a g(z) € GL,(C[z]) such that
gAg~" + (dg)g~' = A
If we write g(z) as
9(2)=go+ gzt + g1+

where gy € GL,(C) and g; € End(C"), its inverse can be denoted by

g =gyt

hence we have:

A A
gAg +(dg)g " = (go+ + g2 4 (Z—:+---+71+HP) (90" +-)dz

the principal part of which is

A A _
(go +---+ gk_lzk_l) (Z_: +---+ f) (g() + -+ gk_lzk_l) ! dz

Later, we will find those gy + - - - + gr_12*~! form a Lie group, called the jet group G}, and
(A28 + -+ Ay/2?)dz lies exactly in the dual Lie algebra g} of Gy.

As we can see, if a meromorphic connection is formal equivalent to A° near some pole,
it must lie in the coadjoint orbit of the jet group G} which containing the nice formal form.

So let’s start from the jet group.
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Definition 2.1 (Jet Group [Boa99]). The (k — 1)-jet group is defined as

Remark 2.1. (1) An element ¢ in G} is an invertible matrix with entries of truncated

polynomials:
9(Q) = go+ ¢+ -+ + g
where gy € GL,(C) and no invertible conditions on the rest coefficients.

(2) An element X of the Lie algebra g; of Gy can be denoted by

X =Xo+ Xi¢+ - 4 X M

where X; € End(C"). Hence it is an n?* dimensional complex vector space, and G}, is a n?*

dimensional complex Lie group.

(3) An element A in the dual Lie algebra gj is suggested to be write as

(A, A
A_<Ck+ +<>d§

where d( is just a symbolic notation, it has no meanings here. The pairing is given by

(A, X) =) " tr(A;iXi_1) := Reso(Tr(A) - X)

=1

(4) There is a unipotent subgroup of Gy, namely
By ={g(z) € Gx : g(0) = L.}
where [, is a identity matrix, a simple observation yields
Gr =GL,(C) x By

hence GL,(C) is also a subgroup of G. Moreover, it induces a decomposition on the level

of Lie algebras
gr = gl,,(C) @ by

It is no wonder that we have in the dual level:

i = g (C) @ b;
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where the projection is given by

Tirr s

b i —— gl(C)

where 7, and mRes are defined by taking irregular part and residue part respectively.

The Lie group G}, acts on g; by the coadjoint action g - A := gAg~!, consequently, the
coadjoint orbit O containing the element Ay /C* +- .-+ Ay/2? is a symplectic manifold. The

symplectic structure is given as follows:

Lemma 2.1 ( [Boa99]). (1) For any A € O, the tangent space is
TAO ={[A, X]: X € g} C g5
(2) The symplectic structure is given by
wa([4, X], [A,Y]) = (4, [X,Y])

Proof . For the first statement, for any X € g;, the exponential map exptX is an
element in Gy for t € R, and y(t) = (exptX)A(exptX)~! defines a curve on O passing

through A whenever t = 0, hence an element of 74O can be expressed by
—1 (exptX)A(exptX)™! = [A, X]
t=0

Then the second statement follows directly form chapter 1. B
Since GL,(C) is a subgroup of Gy, it also can act on O by coadjoint action, and this

action is obviously Hamiltonian with residue map as the moment map.

Lemma 2.2 ( [Boa99]). The Lie group action GL,(C) x O — O is a Hamiltonian action
with the moment map
50— gli(C)
Ak Al) Al
-+ — | d( = —d(
( ¢ ¢ ¢

Proof. Since the moment map of the action G, x O — O is just inclusion, and dual
map of the inclusion GL,(C) — Gy, is the residue map mges : gp — gl (C), and since the

GL,(C) action is induced from the inclusion, the moment map is just the composition
% T Res ”
p:O=gp—gh(C) MW

So now, the symplectic quotient O J/GL,(C) is a symplectic manifold.
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Theorem 2.1 ( [Boa99]). The moduli space M*(A) of generic meromorphic connections
on P! x C" with formal form A = (*A° ..., ™A°) near each pole a; is isomorphic to the
symplectic quotient:

M (A) =0y x ... X O,/ GL,(C)

where O; is the coadjoint orbit of Gy, containing *A°.

Hence there exists an intrinsic symplectic structure on M(A).

Proof. The proof is simple. We choose a coordinate chart on P! such that the coordi-
nate of each pole a; is a finite complex number which will still be denoted by a;, hence we

can write down the local expression of V as

V=d- Z(Z_al ---+(Ziillai))dz

It contains no holomorphic part, since there are no other poles in the other coordinate chart
on P

A key observation is that if V is formal equivalent to d—?A°, it must lies in the coadjoint

orbit of Gy, containing ‘A° € gj, , however, the inverse is not true in general [BJL79], but it
is true for the generic case [BV83].

Moreover, since oo is not a pole, it requires
1A1+...+mA1:0

by Lemma 2.2, this is equivalent to say u('4,...,™A) = 0, and different global trivialization
on left hand side implies the coadjoint action on the right hand side, hence by our discussion

above, the theorem is proved. B

2.2 Extended Moduli Space

Again, we first take a glance at what have been moduled by the gauge transformation
group in the extended case. With the notation used above, d — A has irregular type A°
implies there exists a g(z) € GL,(C[z]) such that the irregular part of gAg~" + (dg)g~" is

same as AO. Hence we have:
-1 -1 k—1 Ak Ay
gAG + (dg)g = (go+ -+ g2 ) |+ H—+HP (got+ -+ )dz+ ...

the irregular part of which is
A A A A
Wirr(go( k—l— —l——l)go d)-b(Z:—l— —l——2)bldz
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for some b € By, the right hand side lies in the coadjoint orbit of the subgroup Bj containing
(Ap/zF + -+ + Ay/2?)dz € b}, such an orbit will be denoted by Op. The analysis above

motivates us to define the extended orbits:

Definition 2.2 (Extended Coadjoint Orbit [Boa99]). The extended orbit O ¢ GL,(C) x g

associated to Op is

{(gOa A) € GLN(C) X 92 : 7Tirr(g()/élg()_l) S OB}

Note that we never defined a symplectic structure on O, so, next of our works will focus

on the symplectic structure on O.

Lemma 2.3 ( [Boa99]). Define the By action on T*Gy x Op by
b-(g,A, B) s (bg, A,bBb™)
where (g, A) € TGy = Gy, x g5, B € Op. Then, this action is Hamiltonian and we have
T*Gj x Og /B, = O

Hence O has is a symplectic manifold with the symplectic structure induced from the product

space.

proof. It is easily to check that the By action has the moment map:
MIT*GkXOBHbz

(9, A, B) = —min(Ad,(A)) + B

Now, define the map
X 0)— 0 (9,4,B) = (9(0).4)

it is obviously well-defined surjective and with By as fibres. B

Lemma 2.4 ( [Boa99]). A tangent vector v € Ty, 4O C gl,,(C) x g of O at (go, A) has the
form
v = (g(]X(b [A7X] + g(]_lAgo) S g[n<c) X gl:

where X = X+ X1¢ + -+ + X,_1¢* 1 € g, A € t* (technically, it is Ad(/C).

proof. For (g, A, B) € p='(0) C T*G}, x Og = G}, X g; X Op, from the proof of Lemma
2.3, we need to request
B = my, (gAg_l)
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and recall that
T(gvA,B)Hf_l(O) < TgGk X gz X TBOB =~ Ok X g;‘; X TBOB

now, from lemma 2.3, the map

is surjective, hence the tangent map

(dX)(g.a.8) : Tigamn™ (0) — Tigo,0)O

is also surjective. Notice that, for X = X+ X,¢ + -+ X;_1¢(F 1 € gi, and A € t*, the
curve defined by

y(t) = (getX, e tX (A + tgglAgo) etX, B) T — 1 (0)
is a curve in 4 ~1(0) passing through (g, A, B) whenever ¢ = 0, indeed,

e (9 e (A4 tgy 'Ago) e e g) = T (9Ag™" + tggy 'Agog ™)
= Tlirr (gAgil) =B

so, a tangent vector 5§ € T(, 4 gy '(0) can be expressed by

v(t) = (9X.[A, X] + g "' Ago, 0)

t=0

hence any v € T, A)O can be expressed by

d

v = (dX)(g,a,B)0 = 7
d

% . (g(]etXO,e_tX (A—l—tgo_ll\go) etX)

= (90Xo, [A, X]+ g5 " Ago)

x o (t)
t=0

as was to be shown. B

Remark 2.2. If we use the tangent map of left multiplication

(dLg—l)g . TgGk e gk:
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to identify T,Gy with gy, then our tangent vector v € T(y,, A)O can be identified by
v = (Xo, [A, X] + go_lAgo) & g[n(C) X gz
similarly, a tangent vector 8 € T(y 4,54 *(0) then becomes to
6 = (Xa [A>X] +g()_1A9070) € gk X g]t; X TBOB
and we will use this expression in the later computation.
Lemma 2.5 ( [Boa99)). For vy, vy € Tiy, 40, the symplectic form on O is given by
. _ 1 —1
w(gO,A)(UhUQ) = <A1790X290 > - <A2790X190 > + <A7 [Xh X2]>

where v; = (XiO, (A, X;] + go_lAigo)
proof. Recall that for 8, s € T(97A7B),LL_1(O) C gk X g5 X TsOp, the symplectic form

on u1(0) C T*Gy x Op is

Wg,4,8)(B1, B2) = wg,a) (Pr1P1, priB2) + wp (prySi, prif)
= wig,a) (X1, [A, X1] 4+ g5 " Mgo) , (Xa, [A, Xo] + g5 " Aago))
= ([A, X1] 4 go ' A1go, Xa) — ([A, Xa] + g5 ' Aago, X1) — (A, [X1, Xa])
= (A1, goXag5 ") — (A2, 9o X195 ") — (A, [X1, X3))

where pr; is the projection of TG, x Op onto the first and second component with respect

to ¢ = 1,2 and pr} represents for their tangent map, and
Bi = (le [Aa X’L] + g()_lAig[)v 0) ) 1= 17 2
hence the induced symplectic form on O is

D(go, ) (V1,V2) = D(go, ) ((dX)(g,4,8)01, (dX)(g.4,8)V2)
= w(g,A,B)(ﬁla 52)
= (A1, goXagy ') — (A2, 90 X190 ") — (A, [X1, X))

as was to be shown. W

We can see that an element (g, A) € O is determined by gy, the residue and the irregular

part of A, hence we have the following decoupling lemma:
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Lemma 2.6 (Decoupling [Boa99]). The following map is a symplectic isomorphism

¢:0 — T*GL,(C) x Op
(gOa A) = (.907 7-[-Res(fél)a Tirr (gOAg(]_l))

proof. The map

Y : T*GL,(C) x Og — O
<90757B) = (907 g()_lBg() +S)

is the inverse of ¢, and we can show it is symplectic by straightforward computation. H

Lemma 2.7 ( [Boa99]). The Lie group action

GL,(C) x O — O
h-(go, A) — (goh ™", hARTY)

is a free Hamiltonian action, the moment map is

w0 s gli(C)
(907 A) > —TRes (A)

proof. The induced GL, (C)—action on the decoupling T*GL,(C) x Op is
h-(g0,5,B) = (gghfl, hShil,B)

now, we need to check whether GL,(C)—action on T*GL,(C) is Hamiltonian. For X €
gl,,(C), if we identify T,GL,(C) with gl,(C) by the left multiplication, we can compute the

fundamental vector field
X(g.5) = (=X, [X, 5]) € gl,,(C) x gl,(C)
hence for any (Y, R) € T{,,6T*GL,(C) = gl,(C) x gl (C), we can compute

(LXW)(gﬁ) (Y7 R) - <[X7 5]7 Y> + <R7X> + <S7 [Xv Y])
= <Rv X>

next we claim

pt: T*GL,(C) — gl (C) (9,5)— —A

is the moment map, in fact, for any X € gl,(C), we can compute the tangent map of u
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straightforward by
(dﬂ}() (9,8) (Y,R) = —(R, X)

hence it is a Hamiltonian action, thus we can compute the moment map by

:u(g()’ A) = /JJl (WRes(A» + 0 = —TRes (A>

as was to be shown l

Now, using an analogue method from Theorem 2.1, we can prove:

Theorem 2.2 ( [Boa99]). The extended moduli space is isomorphic to :

M(A) 2Oy x -+ x Oy |GL,(C)
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3 Stokes Representations and Monodromy Manifolds

As we mentioned in section 1.2, there is an important family of invariants in S/y;c(AO),
namely the Stokes factors (matrices). Meanwhile, the local theory of meromorphic connec-
tions is just the theory of linear ODEs, hence Stokes factors can help us to investigate the
moduli space of meromorphic connections as well.

In this chapter, we will introduce a more generalised notion of monodromy representa-
tions, which is called the Stokes Representation of a groupoid T, which is a slightly larger
notion than the fundamental group (P! \ {ai, ..., am}).

We will define the moduli space of the Stokes representations
M(A) = Homg, (f; GLn((C)> /G1,(C)

and see the relation between which and M(A) defined in the last chapter by showing two
generic connections are equivalent precisely if they induce the same Stokes representations.

Then we shall give an explicit description of M(A)

3.1 Stokes Representations

First, as we did before, we fix the data A = {1A° ..., ™A%} of irregular types near each
pole a; on P!, and choose m disjoint open disks D; C P! which containing a; for each i so
that the coordinate chart on D; vanishes at a;.

Now, choose a base point py € P!\ {ay,...,a,,}, and a point bé in each of the sectors
bounded by two anti-Stokes directions at each pole a;, where £ ranges over some finite set

which indexing the Stokes sectors of each *A°.

de

The choice of bg

Let B; represents for the set of those bé near each a;, and Bi, the lifting of B; into the

universal cover of D; \ {a;}, hence

—~—
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Ifpe B;, the corresponding point in B; will be denoted by p.

Definition 3.1 (The groupoid f). The groupoid [ is a category consists of following data:
(1). The objects Ob(I) is the set

B = {pO}OBi

(2). The morphisms between 2 objects py, pa are defined as the set of homotopy classes

of paths

from p; to ps.

We assume (F,V, g) is a generic meromorphic connection with the compatible framing
g on a holomorphic vector bundle E, with prescribed poles on the divisor D = ), k;a;, and
with irregular types A near each pole a;.

We assume V = d — ‘A in some local trivialization of £ on D;, hence it determines a
linear ODE dy = ‘Ay, it has a fundamental solution, denoted by ®;.

(E,V,g) will induce a representation of the groupoid I as follows.

Suppose [Yp,p] is @ morphism in I', V will induce a basis of V—horizental (Vs = 0)
sections of E restricted on some neighbourhood of p;, namely ® : C* — E| by extending
®, analytically (as solutions of V) along the the path 7, to pe, the result will be different

from ®5 by a constant matrix ®; = &, - ', hence it defines a representation:

p(mm)) = C = &' &1 € GL,(C)
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Clearly p only depends on the homotopy class of the path in P!\ {ay, ..., a,,}, and it is

indeed a representation. It has the following properties:

Lemma 3.1 ( [Boa99]). (1). For any i, if p; € B; and p, is the next element in B; in the

positive sense, assume v, is a small arc in D; from p; to p, then

P (’752171) € Stod (ZAO)

where d is the unique anti-Stokes ray that v, crosses.
(2). For each i, there is a diagonal matrix ‘A (which has distinct eigenvalues mod Z
when k; = 1) such that for any p; € B;, p» € B and Vpapr» We have:
P (Vmtivom) = P () - €71
here p (%fg(ﬁ1+27r)) is the same path as 7,5, but p1 4+ 27 is the next point after p; in the

universal cover B;.

proof. The 1st statement comes directly from Definition 1.9.
For (2), we assume V = d — ‘A in some local trivialization on D;, where

i

, , A
(dg)g '+ g'Ag ' =d (’Q) + ?dz

where g € GL,(C[z]), and ¢g(0) = ‘g is the compatible frame at the pole a;, d(*Q) is the

irregular part of “A%. Recall that two consecutive branches of log z will be differed by a

21 - v/—1, hence

P (Voit2m) = p (V) - 2T m

Remark 3.1. Since the trace Tr(A) is the residue of V at the pole a;, by Lemma 1.1, we

need to impose that
> Tr(‘A) = —degE
i=1
Next, we shall call a representation of I' with these 2 properties the Stokes represen-

tation

Definition 3.2 (Stokes Representation [Boa99]). A Stokes representation p is a represen-
tation of the groupoid T':
p:T — GL,(C)

together with a choice of m diagonal matrices ‘A, such that (1) and (2) in Lemma 3.1 holds.

The matrices ‘A associated with the Stokes representation are called the exponents of
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formal monodromy, the number
deg(p) := Z Tr (‘A)
i=1

is called the degree of the representation (by Remark 3.1, it is a integer number).

Remark 3.2. The connections are not needed in the definition of Stokes representation
appeared above, in fact, once we get a choice of nice formal form A near each pole a;
together with a choice of formal monodromy A, a Stokes representation p can be defined.

Hence to be simplified, we can use (p, A, A) to express for a Stokes representation.

The collection of all Stokes representations of I' is denoted by Homg,(I'; GL,(C)).
Next, we will define a GL,,(C) action on Homg,(I'; GL,(C)).

Definition 3.3 ( [Boa99]). Suppose p1, 72 € B\ {po}, g € GL,(C), we define

-1

(9 2) Voope) = 9P (Vpopo) 9 (9 P) por) = 9P (Vpopn)

-1 -1

(9 P) (Viapo) = P (Vpapo) 9 (9 P) Vo) = P (Vapn) 9

If two Stokes representations are differed by a GL,(C) action, then we call these 2
representations are equivalent, the space of equivalent classes of Stokes representations will
be denoted by

M(A) = Homgy,(I'; GL,(C)) /GL,(C)

The main theorem will be stated as follows:

Theorem 3.1 ( [Boa99]). Two generic connections (Fi, Vi,g1), (Ea, Vi, ge) (rankE; =
rankFy = n) with irregular type A are equivalent, if and only if they induce the equiv-

alent Stokes representations. In particular, we have an injection:

v: M(A) — M(A)

this map v is called the Riemann-Hilbert map

proof. The only if part comes directly from the construction of GL, (C) action. For the
if part, we denote
q)](Zl) C"— Ej

the canonical basis of solutions of V; on each sector at a;, hence the local isomorphism

20 (01) 7 By — B
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can be extended to the whole P!, this is a desired isomorphism between (Ej,Vy,g;) and
(E2,Va,g2). B

Remark 3.3. The study of the surjectivity of the Riemann-Hilbert map v, that is for
any Stokes representation (p, A, A), does there exist a connection (E,V,g) on some vector
bundle E with the irregular type A such that the representation induced by which is precisely
p? This is the (generalised version of) Riemann-Hilbert correspondence. Later, we will see
this correspondence does hold in the case of degree zero vector bundle, that is if we denoted
by M°(A) the extended moduli space of meromorphic connections on degree 0 bundles, then

the Riemann-Hilbert map is an isomorphism:

vy : M°(A) — My(A)

3.2 Explicit Monodromy Manifolds

In this part, we will give an explicit description of M (A). Before doing this, we shall
introduce the notion of the monodromy manifolds.

Suppose Ny, ..., N, are m manifolds, we have maps pu; : N; — G to some group G.
There is a GL,,(C)-action on G such that each p; is GL,,(C)—equivariant, define a map p as
follows:

piNy XNy — G (N1, Nn) = P(N) -+ - p1(n1)

p is clearly GL, (C)-equivariant, we will write the quotient:
Ny X =+ X Ny J/GL,(C) := p~"(1)/GL,(C)

A manifold with such a form will called the monodromy manifold, for example, the moduli

space M(A) and M(A) defined in the previous chapter are both monodromy manifolds.

Definition 3.4 ( [Boa99]). Let U, be the upper/lower triangulated subgroup of GL,(C), t,

the set of diagonal n x n matrices and k; is the order of the pole a;, we define the manifold

Ci = GL,(C) x (U x U ! x ¢
A point of C; will be denoted by (C;, 8, '\"), here
S = ('), s (o) € (Uy x UM
The map p; : C; — GL,(C) is defined as follows:

Hi <Ci, 'S, iA,) =it <i51 © Sy 627“@'%/) C;
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The GL,(C) action on C; is given by
qg- (C«i’is7iA’> — (C«ig—l’is’iA’>

hence it clearly makes y; equivariant, we define the extended monodromy manifold to be

M :=Cy x --- % Cpn /GL,(C)

Lemma 3.2 ( [Boa99]). The extended monodromy manifold M is indeed a complex manifold

with same dimension as M*(A).

Our main goal in this section is to show that extended monodromy manifold M isomor-
phic to the moduli space of Stokes representations M(A), the construction of this isomor-
phism will depend on a choice of Tentacles, we will see later that those ‘S come from the

Stokes matrices and ‘A’ from the exponents of the formal monodromy.

Definition 3.5 (A Choice of Tentacles [Boa99]). A choice of tentacles T is a choice of:
(1). A point p; in some sector at a; between two anti-Stokes rays.

(2). A lift p; of each p; to the level of universal cover of the punctured disk Di/\\«_[;i} = R.

(3). A base point py € P*\ {ay, ..., an }.

(4).

4). For each p;, a path

71 [0,1] — P\ {ay, ..., am}
travels from pgy to p; such that the loop based at pg
(’771_11 ’ Bm : 'Ym) o (/71_1 ’ ﬁl : ’71)

is contractible in the fundamental group (P! \ {ay, ..., an},po), where §; is any loop in

D; \ {a;} based at p; winding a; once in a positive sense.

A choice of tentacles, which really looks likes a tentacle
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Theorem 3.2 ( [Boa99]). For each choice of tentacles T there is an explicit isomorphism
b7 : M(A) —s M :=C x X ém//GLn((C)

proof. For a given Stokes representation (p, A, A) € Homgo(L'; Gl,(C)), we use ‘bs € B;
represents for the choice of the point in the é—th Stokes sector “Secte in D; \ {a;} during the
construction of ', and without loss of generality, we assume the choice of the points p; in
the tentacles 7 were chose among one of those ‘b¢, and py coincides with the fundamental
point in r.

As we have mentioned in section 1.2, the point p; determines a labelling convention of
the anti-Stokes rays of ‘A°, and its corresponding point p; in the universal cover determines
a branch of log z, hence we can determine a permutation matrix P; (cf. Lemma 1.2) which
can upper/lower-triangularise all Stokes factors in StOidé(iAO).

We define:

Ci= P p(Ipe) = P71+ p (i) € GL,(C)

We shall use r; = |*A| to represent for the number of anti-Stokes directions of ‘A°, and

recall that it is divisible by 2k; — 2, the division is denoted by ¢; = r;/2(k; — 1).

a half period

small arc

Next, let ‘x¢ be the morphism between the points ip _1ye, and ib ¢., which is a small arc
3 P b -1t &t

crossing a half-period from the sector ‘Sect(_1), to ‘Secte,, and define
"Se=Pp (’xE) Py &E=1,...,2k —2

and

’

‘N =P 1 AN-PB, E=1,..,2k —2

hence a choice of tentacles T determines an element C; := (C’i, ‘S, "A/) in each C~Z associated

to each Stokes representation (p, A, A), i.e a map:
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By computing

=1
=1]r (" Bi-w)

i=

P
1

(Yo" B m) = (" B m))
€ GL,(C)

hence the image of ¢7 is exactly pu~'(1), by Theorem 3.1, it also injective, and since these

p; are clearly GL,(C)—equivariant, hence it can be descended to the quotient space:

dr: M(A) — M :=C; x --- X Cp /GL,(C)

|

In the rest part of this thesis, we will pay more attention on the case of trivial bundles,
hence we only need to consider the component of degree 0 part of the moduli space, that is
My(A), we will give a symplectic structure on My(A) but from a different approach, namely,

the C'*° approach.
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4 The C* Approach

4.1 The Flat Singular C* Connections

Let D = kya; + - - - kpnay,, € Div(PY), k; > 0, C* be the sheaf of smooth functions on
P!, and Op the sheaf of meromorphic functions with poles on D, and we define the sheaf of

smooth functions on P! with poles on D to be
CYy =0p®nC™

and analogously, we can define the sheaf of smooth r—forms with poles on D, namely €27,.

Remark 4.1. Locally, if we choose a coordinate chart (D;, z;) containing a; with z;(a;) = 0,

a function f € C¥(D;) can be expressed by

f(z) = ‘Zi

Z

where ¢ is a smooth function on D;.

Definition 4.1 (Laurent Map [Mal66]). We fix a family of coordinate charts D; near each
a;, such that the coordinate of a; is 0, the Laurent Map at each D; is defined by

L : Q0 (PY) — 27%Cla, s ® A\ C

the Laurent expansion of the local expression of w € 27, on D; at the point a;.

For example, f € C¥ has local expression f = g/ zlk “ on D;, the Laurent map on f is:

where L;(g) is the Taylor expansion of g at z = 0.

Remark 4.2. It is not hard to see the following facts of the Laurent map:
(1). If Li(w) = 0 then w is non-singular at a;.

(2). L; commutes with the exterior derivative and wedge product:
Li(wl N u}g) == Li(wl) A LKC«)Q)

dL; = L;d

Another important fact is that
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Lemma 4.1 (E.Borel). The Laurent map L; is surjective. More specifically, if M is a
differential manifold, I = [—¢,¢] C R, and f € C[z,y] ® C®(M), where (z,y) is the
coordinate on C, then there exists an f € C°°(M x I?) such that the Taylor expansion of f
atr =y =01s f .

Definition 4.2 (C*° singular connections [Boa99]). A C'* singular connection on a C*

vector bundle E over P! is a morphism between sheave:
V:E—E@Q
where & is the sheaf of C'*° sections of E, satisfying the Leibniz rule:
V(f-s)=(df)®s+ f-Vs

where f is a smooth function.

Remark 4.3. Locally, if we choose a local trivialization of F near the singularity a;, V has

the expression:

‘A
k.

z;"

V=d-

where *A is a matrix-valued C'> 1-form.

In this chapter, we will mainly focus on the case that F is a trivial bundle, recall that
any degree 0 vector bundle E over P! is C*®°—trivial. Since trivial bundle admits a global C*
trivialization, the connection matrix o of V.= d — v is in fact a singular 1-form defined on
the whole P!, hence the collection of all singular connection with poles on D can be denoted
by
Ap = {d—a:aeEnd, () (P))}

Moreover, the gauge transformation group of a trivial bundle is simply:
G = Aut (P' x C") = GL, (C*= (P"))
for g € G, the g action on a connection d — a € Ap is given by
gla] = (dg)g™" + gag™

Remark 4.4. It is important to check that the gauge transformation is associative, i.e. for

h,g € G, one has

hence it does define a Lie group action.
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Definition 4.3 (Curvature [Huy05]). The curvature of a connection V is Q(V) := V%
QL er0 L EeQLo0 =02,

a connection is called flat if its curvature is zero.

Hence if we write V = d — «, the curvature is
Q=d—a)AN(d—a)=—da+a N«

which is a singular 2-form, called the curvature form. It is no wonder that
Corollary 4.1. Every meromorphic connection is flat.

Another important fact is
Lemma 4.2. The gauge transformation of a flat connection is again flat.

proof. Suppose Q(V) =0, for g € G, notice that

Next, as we did in the case of meromorphic connections, we choose a family of nice
normal (formal) form A = ('A% ..., ™A°) near each singularity a;, where ‘A° are generic
diagonal matrices with only principal parts in Laurent expansion. In order to define a

connection with formal type A, we can do comparison between their Laurent expansions:

Definition 4.4 ( [Boa99]). The set of all singular connections with formal type A is
Ap(A) :={d—a: Li(a) = 'A%

similarly, the set of singular connections with irregular type A is

_ . N .
Ap(A) = {d —a: Li(e) = 'A%+ ("A = 'A°) —%, for some’A € t}

Zi

If we impose an extra condition, flat connections, on each of the spaces in the above

definition, then the corresponding space will be denoted by Ag(A) and Ag(A) respectively.
Definition 4.5. G, G; are the subgroups of G, consisting of all elements which have Taylor

expansion equal to constant diagonal matrices and identity I respectively.

4.2 The C* Linear Ordinary Differential Equations

Now, we will give a C* description of the space H (A°) defined in section 1.2.
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Let D be a unit disk in C containing z = 0, and fix a diagonal meromorphic connection
germ d — A° with an order k pole at z = 0. Recall that in this case, our G is actually
GL, (C*(D)), G, and Gr are of same meaning as before.

Lemma 4.3 ( [Boa99]). The projection (A, F') — F defines an injection between Syst (A%) —
G[z].

So it allows us to identify Syst (A% with a subset of G[z].
Definition 4.6 ( [Boa99]). We define:

F(A%) = Ly! (S/Y\St (AO)>

Where Ly : G — GL,(C|z, z]) is the map of Laurent expansion at z = 0.

Remark 4.5. For g € F (A°) C G implies:
(1). Lo(g) € GL,(C[z]), i.e no z—parts in its Taylor expansion, and

(2). Lo(g) [A”] is convergent to some matrix-valued meromorphic 1-form A.

Lemma 4.4 ( [Boa99]). The Taylor expansion at 0 induces isomorphisms
(F(4°) /1) G{=} = H (A7)
proof. Notice that the map

F () J6 — S35 ()
lg] = (Lo(9) [A°], Lo(9))

defines a bijection (by Remark 4.2). W

Theorem 4.1 ( [BJL79]). We have isomorphism
F(A%) ) G{z} = Aq (A°)
Hence combining with Lemma 4.4, we have isomorphism
H(A%) = An (A7) /Gy
proof. Define a map o by:

o: F(A")/G{z} — An (A?)
9] = 97" [Lo(g) [A°]]
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First,we claim this map is well-defined. Indeed, the Laurent expansion of o(g) is

Lo(o(g)) = Lo(g) ' Lo(g) [A°] = A

by Lemma 4.2, o(g) is also flat, hence o(g) € Ay (A°).
Next, for [g] = [¢'], which implies there exists an h € G{z} such that ¢ = hg, notice
that Lo(h)[A] = h[A], hence

o(hg) = g 'h™" [hLo(g) [A°]] = o(g)

so it is well-defined.

o is also surjective. To see this, for A € Ag (A°), its (0,1)—part is non-singular, hence
there exists an g € G such that (9g)g~! = A®Y. Observe that g~'[A] is also flat and has no
(0,1)—part, in fact, the (0,1)—part of g~'[A] is

(0g7) g+ g tA®Ng = —g7"(dg) g 'g+ 9 (09)g g
=g '0g+g 09 =0

hence we can write g ![A] = Fdz/z*. Next we will show Ly(g)g '[A] = A, first observe

that Ly(g) has no Z—terms, in fact
OLo(g) = Lo(0g) = Lo (AVg) =0

hence

Lo (97") [A°] = Lo (97") [Lo(A)]
= Lo (g7 '[A]) =g '[4]
Moreover, it also implies g € F (A°). Finally, it follows from Lemma 4.3 that o is injective.
|
The last thing is to define the Stokes matrices from Ag(A) side.
For A € Ag(A), from theorem 4.1, there exists an g € F (A%) C G (with (dg)g~! =
AOD) such that

gLo(97') [A7] = A

we assume

AO
AO = dQ + 7(12

hence on each Stokes sector Sect;, the fundamental solution of dy = Ay can be formulated
by
D, = g% (Lo (g_l)) %@

hence then, the notion of Stokes factors can be defined as usual as Definition 1.9.
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4.3 Globalization

As the local picture was shown in section 4.2, in this section we will turn to the case on
the whole P!

Recall that A = (1A%, ..., mA?) are the fixed data of irregular type near each pole a;,
and we use M°(A) represents for the extended moduli space of meromorphic connections

(E,V,g) with irregular type A on the degree 0 bundles.

Theorem 4.2 ( [Boa99]). We have the isomorphism

MO(A) = Ay(A) / G
proof. The isomorphism
51 MOA) ,Ztﬂ(A)/ Gy

can be constructed in the following way. For [V] € MO°(A), since deg E = 0, and as
was shown in the local picture, we can choose a C*°—global trivialization of F, namely
gv : E — P! x C", such that:

(1). gv(a;) = “go for each a;.

(2). If we assume V = d — oy under this global trivialization, the Laurent expansion

at a; is

hence we obtain a map

o: M (A,g) — Aa(A)
V]~ d—ay
it is straightforward to check this o is well-defined, surjective, and precisely has G;—orbit as

fibre, hence we can descend it to the quotient level, i.e &, which is a desired isomorphism. l

Remark 4.6. If we restrict this & to the submanifold of trivial bundle, i.e M*(A), then that

global trivialization gy can be viewed as a bundle automorphism, i.e gy € GL, (C* (P')).

As what we did in chapter 3, for any d — « € flﬂ(A), it determines a Stokes represen-

tation:

v:Ang(A) — My(A)
we call this v, the monodromy map.

Theorem 4.3 (Riemann-Hilbert Correspondence [Boa99]). The monodromy map v is sur-

jective and precisely has the G;—orbit as fibre.

48



Hence it induces the bijection

MO(A) = Ag(A) /G = My(A)

proof. We use T to express for the groupoid determined by A, choose a tentacle T,
and thickening each v; by

¥ :[0,1] x [0,1] — P\ {ay, ..., am}

we denote |7;| the ribbon formed by those 7;. Let Dy be the disk containing py disjoint with

each disk D; containing a;, define the region:

7| :=DouJ (DiU5[) P!
i=1
Without loss of generality, we may assume that:

(1). For each i # j, the intersection of two ribbons
%] 1331 € Do

(2). |T| homeomorphic to a closed disk.

First, we will prove the monodromy map v is surjective. From Theorem 3.2, every
degree 0 Stokes representation determines a group of data (C,S,A’) in the monodromy
manifold, by theorem 4.1 and lemma 1.5, near each a; there exists an a; € “Ag (‘A°) with
the data of C;—component of (C,S,A), it is straightforward to extend «; arbitrarily to D;.

these a; can be patched along the ribbons in the following way. Let ‘{®; be the canonical

the patching of «;

fundamental solution of c; on the sector containing p;, namely ‘Sectg. Since GL,(C) is path

connected, we can choose a smooth map

Xi : |%il — GL,(C)
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such that x; = 1 on |55| N Dy and x; = ‘@, P,C; on |¥;] N “Secty, hence we can define a on
| T by

(67 on Dz

alr =<0 on Dy

(dxi)xi' on |7
It is straightforward to check this definition agrees on the overlaps. Now, we must extend
a to the whole P!. The condition p,,---p; = 1 guarantees that o has trivial monodromy
around the boundary circle 0|7, hence the local fundamental solution ¥ of a extends to a
loop in GL,(C)

U :0|T| — GL,(C)

Then degp = 0 implies this loop ¥ is contractible in Gl,(C). In fact, recall that the
determinant map det : GL,(C) — C* makes GL,(C) an SL,(C)—bundle over C* = S!,

and SL,,(C) is simply connected, from the homotopy long exact sequence for fibrations, the

determinant induces an isomorphism between fundamental groups
1 (GL,(C)) =2 m (Sl) =7
hence we need to show the induced loop
det ¥ :9|T| — C* = S!

has winding number zero around z = 0. The winding number of det ¥ is

1 ddetVv 1 T
2w/ —1 a|T] det U _27r\/—1 ||

r(a) =degp=0

thus the loop W can be extended to a smooth map from the complement of | 7| to GL,,(C).
We can define @ = (dU)¥~" on this complement and thereby obtain a € Ag(A), the
surjectiveness hence now be proven.

As for the monodromy map v has precisely G; as fibre, it is an analogue proof of Theorem
3.1. 1

4.4 Symplectic Structure

In this section, we will give a symplectic structure on AD(A), it is an analogue of
Atiyah-Bott’s frame work [AB83] on the case of non-singular connections, then by showing

the curvature map is the moment map of G;—gauge action, hence the moduli space of flat
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C®° singular connection is just the symplectic quotient
A(4) /G, = Ap(4) /6,

hence a symplectic manifold. Then by taking monodromy map, MO(A) will inherit a sym-
plectic structure as well.
4.4.1 The Atiyah-Bott Symplectic Form on Ap(A)

Lemma 4.5 ( [Boa99]). The space Ap(A) is a Fréchet manifold, and for every a € Ap(A),

the tangent space at « is:

T Ap(A) = {¢ e Q) (P') @ End(E)| Li(6) € t%} W

Zi
proof. For the last assertion only. Choose ¢ € W, observe that the path
Y(t)=a+té: I — Ap(A)
indeed defines a path in Ap(A) with v(0) = «, hence differentiate at t = 0, the tangent
space is W. A

Lemma 4.6 ( [Boa99]). For ¢, ¢ € W = T, Ap(A), the formula

wa(9, 1Y) = Tr(o A )

1
27 - \/—1 Pl

defines a symplectic structure on the Fréchet manifold Ap(A).

proof. Since L;(¢ A1) is a (2,0)—form on P! hence it is zero, by Remark 4.2 (1), ¢ A9
is non-singular, thus this integral is well-defined. Notice that the integration is independent
of the choice of «, hence w, is constant, in particular, it is continuous and closed: dw = 0.

To see it is non-degenerate, if w, (¢, 1) = 0 for all ¢, we assume ¢ # 0, it must not
vanish at some p # aq, .., a,,, hence we can construct a 1 vanishing outside a neighborhood
of p such that w, (¢, 1) # 0, a desired contradiction. B

4.4.2 The Fréchet Lie Group ¢ Action is Hamiltonian

The gauge group

G = GL, (C™ (P')) = C™ (P'; GL,(C))
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is a Fréchet Lie group, i.e. it is group with a structure of a smooth Fréchet manifold such

that the group operation and inverse are C*. Its Lie algebra, denoted by Lie(G), is
Lie(G) = End, (C°° (]P’l)) =(C* (Pl; g[n(C)) =TI'(End F)

where I'(End ) means the global section of the endomorphism bundle End E.

For X € Lie(G), the exponential map is then the usual exponential of matrices:

exp : Lie(G) — G
X —sexpX =e~
the exponential is also a local chart of a neighborhood of the identity, and it can be extended

to a complex structure such that G is a complex Lie group.

Later, we will concentrate more on the subgroup G; and Gr, and it is no wonder that
Lie(Gy) = {X € Lie(G) : Li(X) =0}

Lie(Gr) = {X € Lie(9) : L;y(X) € t}

Remark 4.7. (1). For a connection V = d — a € Ap(A), the induced connection V is as
follows:
(@X) w=[V,X]:= V(Xu) - XVu

where X is a section of the endomorphism bundle End F, w is the section of E. To agree

with the notation in [Boa99], we denoted by d, the induced connection of V, i.e:
do : Q° (PHEnd E) — Qp (P End E)

(2). d, naturally induces a connection on the bundle End(E) ® 2L, which will also be

denoted by d,,
do : Qp (P End E) — Q3 (P';End E)

¢ = do + [¢, a]

Note that the image of this d, is actually non-singular, since we can take the Laurent

expansion of [¢, ], which is (2,0)—form on P! hence zero.
Now, we can compute the fundamental vector field of X € Lie(G):

Lemma 4.7 ( [Boa99]). The Lie group G acts holomorphically on Ap(A), and for o €
Ap(A), and X € Lie(G), the fundamental vector field of X associated to the gauge trans-

formation is
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proof. By definition we have:

d
X(a) = p {(dexptX)(exptX)~" + (exptX)a(exptX)~"}
t=0

d

= 2| {(de) X 4 ¥ aemtX)
dt|,_g

— i {etXt(dX>€_tX—‘r6tXa6_tX}
dt |,y

=dX + [X,a] = —=d, X |

Lemma 4.8 ( [Boa99]). The G action on Ap(A) preserves the symplectic structure.

proof. Any g € G will determine a differmorphism of ~AD(A), we can compute its
tangent map:
(dg)a : TaAp(A) — Ty Ap(A)
¢ — gbg~!
In fact

gla+t¢] = gpg™!
t=0

d
(dg)atp = at

hence .
o ()6 (b)) = 5= [ T (aog™ Ay ™)

1
T2y )

Next, we will show this G-action is Hamiltonian with curvature map as the moment

Tr(oAY) =wa(o,) W

map.

Lemma 4.9 ( [Boa99]). The curvature map

Q: Ap(A) — Q3 (P End E)
d—a— Qa) =—dat+aNa

is holomorphic, and its tangent map at a € Ap(A) is

(dQ), : ToAp(A) — Q° (P, End E)
¢ = _da¢

proof. For the second assertion only. By definition:

(dQ) 0o = di Qa+1to) = —dyo ]
tli=o
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Next, for any X € Lie(G), and Q(«) € Q? (P'; End E) we can define a paring:

1

(), X) = 5= | TH(Oa)X)

Theorem 4.4 ( [Boa99]). The paring defines the moment map of G; —action:
1 Ap(A) — Lie(Gy)*

hence the Gy —action is Hamiltonian, the symplectic quotient is
n10)/G1 = An(A) /Gy

proof. For X € Lie(G), we denote

1 -
px (o) == T Tr(Qa)X) : Ap(A) — C

we can compute its tangent map (dpx ), : W — C by chain rule:

d
(dﬂX)a(b = a

a
dt

px (o +to)
=0
1
t=0 27T\/—_1 Pl
1
T o Tr ((dQ) 40 X)

1
/=1 Jm

Notice that, since X € Lie(Gy), L;(X) = 0, hence Tr(¢X) is non-singular, thus we have

Tr(Qa + t¢) X)

Tr ((da) X)

dTr(¢X) = Tr((de¢)X) — Tr(é A doX)

applying Stokes formula, we have

(dpix)ats = —%—j__l ( /P ATr(6X) + /P (6 A daX>>

1
| TeeAdX
2/ —1 Jp r(¢ )

= wo(X, ¢) = —(1xw)ad

hence p is indeed a moment map, and the G;—action is Hamiltonian. ll

Remark 4.8. The larger subgroup Gr—action is also Hamiltonian, but the moment map
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need to be modified by:
1 Ap(A) — Lie(Gp)*

where

- 1
(u(a), X) = — ; Resq, Li(aX) + T o Tr(Q(a)X)
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5 The Riemann-Hilbert Map is Symplectic

Now, our story can be illustrated in the following diagram:

o

MO(A) == Ag(A)/G

R

O1 X -+ X O JGL,(C) —— M*(A) —Z— My(A)

where ¢ is the inclusion, 7 is the Riemann-Hilbert map defined in Theorem 3.1 and it is injec-
tive (by taking Stokes representation induced by a connection V). ¥ is the monodromy map
defined in Theorem 4.3, and by the Riemann-Hilbert correspondence, it is an isomorphism,
0 is an isomorphism defined in Theorem 4.2, and / appeared in Theorem 2.2.

M*(A) has the inherited symplectic structure via £, My(A) has the inherited symplec-
tic structure from Aﬂ(A) / G1, and the symplectic structure in the later moduli space was
inherited from the Atiyah-Bott symplectic form on Ap(A), in this chapter, we will show the

Riemann-Hilbert map is symplectic, it is equivalent to show:

Theorem 5.1 ( [Boa99]). The map 6 = o o i:

6: M (A) — A(A)
is symplectic, where o : M°(A) — A(A) was defined in theorem 4.2.
So, the Riemann-Hilbert map:

U MH(A) — My(A)

is symplectic.

proof. Without the loss of generality, we can assume there is just one pole, i.e D = k-a,
and the nice formal form near a is A°, the compatible framing at a is gy, choose a semi-
sphere U which containing a on P! such that the coordinate of a is 0, and we can write every

connection V under this coordinate chart by

V:d—A:d—(ﬂ_i_...é)

zk z

it has no holomorphic parts, since it has no poles on the other semi-sphere, and V is in some
equivalent class in M* if and only if A; = 0.

By the construction in Theorem 4.1:
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where g4 € GL,, (C* (P')) satisfying

a). ga(a) = go
b). The Taylor expansion of g4[A] at a is A%:

La(galA]) = A”

According to Lemma 2.4, a tangent vector W in Ty M* can be write as

W =[A, X]+ gy ' Ago := [A, X] + A

where A is the connection matrix of V using the coordinate chart on U, X € g, with the

expression:
X=X+ X2+ -+ X121

and A is actually Adz/z € t*, notice that W is in fact a matrix-valued meromorphic
(1,0)—form on P'.

We know from the proof of Lemma 2.4, a parameterized curve (t) in M* with v(0) = V,
v (0) = W can be formulated by

y(t) = e X <A + t]\) e = A

hence by Remark 4.6:
o o7(t) = ga,[A]

where g4, is a family of gauge transformations agree with the family of connections A;, which

can be expressed by

tX
ga, = gae

where X € End (C™ (P)), it must satisfy:

a). X (0) = Xo

b’). L, <gAetX[At]> = AY for every t.

Notice that these two restrains on X are just local conditions, hence we can choose one
such that X only supports on a closed disk D containing a, and the Taylor expansion of X
at a is precisely X

L, (X) =X = Xgt e+ X2
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Let’s compute the tangent map do:

(0)e W = o= o {gae¥ (4]}

t=0
0 c\ i ¢ X
g { dgAetX>€ gl gt Age thA1}
ot|,_,

8] {0 (1 (48) 5 2) 0z
t=0
= g4 (df(+ [X,A} +W> ga"

Now, for Wy, W, € Ty M*, where
W =[AX]+4A, =12
by Lemma 2.5, we have
Wy (W, Wa) = (Ae, X0 ) = (Ro, X1 ) + (4, 15, X5

Then, by Lemma 4.6:

1

walnon = [ Tr ((a%, + [ X0, A] +12) A (4% + |55, 4] +W2) )

Notice that Wiy AWy, Wi A [XQ, A] and [X'l, A] AW, are (0,2)—form on P! hence zero, thus

we have

Wi (b1, o) = %—\1/__1 [ T <Xm A de) +Tr (df(l AWy + Wy A de)
+Tr ([5(1, A} A de) +Tr (df(l A [5(1, A])

by the Poincaré lemma:
dTr <X1dX2> =Tr (Xm VAN dXQ)

and X,dX, is non-singular, by Stokes formula:

/Pl Tr (Xm A de) — /}P dTr (defg) —0

and since X ; was chose only supported on D, hence we have

1 ~ -
Wi (f1,¢2) = m /DTY (Xm AWy + Wi A dX2>

4Ty ([Xl A] A df(z) T (df(l A [5(2, AD
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Next, observe that

T ([%0,4] M) = e ([, 4] )~ 7 ((a[50,4]) - )

and
[Xl,A] AX,y = [5(1 A} - %dz Adz
(a ) = |2 e
hence

I= /DTr([f(l,A] Adfzg)
:/ﬂ)Tr([Xl,A]-%> dz A dz
- [ ([ ) - (o)) )
() (|52

9z
recall that by Remark 2.1 item (3), the paring is given by

(4, %) i= Res, (Tr (AX;) ) = Res, (Tr (4 L (X;) )

= Res, (Tr (A - Xj}))

A

5(2) dz A dz

thus by residue theorem we have

e ([%4] %) = 2nvT - Res, (To((%1,4) - X))
= 21v/—1 - Reso (Tr([ X1, A] - X))
=21v/—1- (A, [ X1, X5])

to compute the second part of I, we again use the integration by parts:
0X
/ Tr | | =2

D

A
0z

X2> dzAdg—/D%Tr([Xl,A} -5(2) dzndz—T
— ]

where the last step comes from the enhanced Cauchy formula [GH14]:

Of dzndz  2my/—1 OFLf f(2)dz
PG (oDl 9T /aD(z—a)k
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hence 1
[ == §<A, [X17X2}>

so now, our symplectic form becomes to

W (61, d2) = 27T\/_ Tr Xm/\WngWl/\ng) (A, [X1, Xa])

27r\/_
M/

notice that 0.X;/0z = 0, hence we can use a similar method to compute

J::/DTr (XmA[A,XQ]) :/DTr (88)21 [XQ,A]> dz A dz

D

:/DdTr (Xl-[Xz,A]> :/aDTr (Xl-[Xg,AD

= 2mv/—1 - Resy (Tr( X, - [Xo, A))) = =277/ —1 - (A, [X1, X))

ALA XQ]) + Tr([A, Xi] A dXy)

Tr Xm/\A2+A1AdX2> (A, [ X1, Xa))

so now, our last mission is to compute

WA<¢1,¢2) = —< [Xl,XQ] 71-\/_ TI' XmAA2+A1/\dX2>

since A; are (1,0)—forms, again, applying Poicaré lemma and integration by parts, we obtain:
/ Tr (]\1 A ng) = / dTr (]\1 . XQ)
D D
= / Tr <X2 . ]\1) = ResaTr <X2]\1>
oD

- (R

OJA ((da‘)vwl, (da‘)vWQ) = CUM*(Wl, Wg)

to sum up, we have:

hence ¢ is symplectic, as was to be shown. H
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6 Further Prospects

6.1 The Symplectic Geometry of Isomonodromic Deformation Equa-

tions
6.1.1 The Riemann Isomonodromy Problem

The general isomonodromic deformation equations, introduced by Jimbo, Miwa and
Ueno [JUMS0], was originated from the Schlesinger euqations [Sch12].

Let’s consider a Fuchsian system on P! = C U {c0}:

dy = Ay

A is a matrix of meromorphic 1-forms with only simple poles ay, ..., a,,. If we assume oo is

not a pole of A, then we can write A as

A:ZZ—CM

=1

where A; € gl (C). It induces a monodromy representation of the fundamental group:
p T (]Pl \ {al, ...,Gm}) — GLn(C)

now, the isomonodromic deformation problem is, if we assume the poles a4, ..., a,, are varying
smoothly on C, what conditions shall those A; have such that they induce the same mon-
odromy representation? In other words, there are many different Fuchsian systems with the
same monodromy behavior, how to determine all such systems? Schlesinger in his 1912 pa-
per [Sch12] claimed that all such systems are governed by the equations which are nowadays

called the Schlesinger equations:

da; — a;—a; L 7& J
04, _ [A;,Aj] .
da; Z];ﬁl a;—a; t=1J

Now, if the equation is no more Fuchsian, i.e, the orders of the poles are greater than 2,
the “monodromy” data will be more complicated, the Stokes matrices should be involved.
Let’s consider an (irregular) equation with poles at aq, ..., a,,, the order of each pole a;

is n;, and has no further pole at co, we can write such an equation as

= ‘A, ‘A
iy =y =3 (g o )

i=1 (2 — ai)

We need to request first that this equation is generic, i.e, the matrices ‘A, are diago-
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nalisable and with distinct eigenvalues, and second, this equation is formal equivalent to a
diagonal system, that is to say there exists a formal gauge transformation F; € GL,(C[z])

for each pole a; such that
F[AY =4

where ‘AY is a diagonal matrix. Thus this will determine a group of Stokes matrices

(1S, ..., ™S) near each pole a;, where
‘S = (iSl, e iSri)

is the Stokes matrices at the pole a;, r; is cardinality of the anti-Stokes directions at a;.

Now, let aq, .., a,, vary smoothly on C, the isomonodromic deformation problem aims
to find all irregular systems with the following “monodromy data” being fixed:

a). the number and the order of the poles;

b). the properties of being generic and formal diagonalisable;

¢). the monodromy representation of the fundamental group (the exponents of formal
monodromy);

d). the Stokes matrices near each pole.

Let Xy (a) be the set of all irregular types at a € P! of order k, i.e

dz

22

d
Xk(a)z{szAgz—’,f+---+A8

A?et}

The data that is deforming now is:
i). The position of the poles ay, ..., a,, € P!;
ii). The irregular types (the residue parts are fixed by c¢), since they are the exponents

of formal monodromy):

A= (1A0, e mAO)
We can define the manifold of the deformation data:

Definition 6.1 ( [Boa99]). The Jimbo-Miwa-Ueno deformation manifold is defined by
X ={(a,A) :=tla=(ar,....,an) €P,A= (A .., "A") A" € X}, (a;)}

Define a 1-form on X by:

Q=) <A(z,t)dai — Fi(z,t)D ("A) + -+ '4%) F;l(z,t))
i=1
where D is the exterior differential with respect to the components of ‘A? only, and we use

A(z,t), F(z,t) to indicate that they are depending on the deformation parameter ¢.

Jimbo, Miwa and Ueno’s answer to the isomonodromic problem in the general case is:
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Theorem 6.1 ( [JUMS80]). The linear ODEs with the monodromy data a),b),c) and d) fixed

are determined by the following equation:

Q
dA+[Q,A]+d—:0
dz

This equation is called the Jimbo-Miwa-Ueno isomonodromic deformation equation, it

is a non-linear differential equation satisfying the Painlevé property [Conl2].

6.1.2 Isomonodromic Connection

Now, back to our moduli space M*(A), we can associate a fibre M*(A) at each point
t = (a,A) € X, hence we can define a fibre bundle of moduli spaces, denoted by M*, the
projection is simply
(t,(E,V,g)) =t

Boalch showed that:

Lemma 6.1 ( [Boa99]). The bundle M* of extended moduli spaces is a complex manifold,

moreover, the projection defined above makes it a symplectic fibre bundle.

Tiw L

(a,A)=t

X

the horizontal distribution on M*

The isomonodromic deformation equation canonically determines an Ehressmann con-
nection on this fibre bundle. In fact, choose any (¢, V;) € M*, the set of the solutions of the

isomonodromic deformation equation:

dS)
{v = d— AJdA+ [0, 4]+ A1) = vt} — Ls,
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i.e the collection with the monodromy data as V,, is the submanifold of M*, its dimension

equals to dim X, the horizontal distribution can be given by
d . (t,Vt) — Tvtﬁvt

This connection is called the isomonodromic connection. In [Boa99], Boalch gave the

symplectic nature of the Jimbo-Miwa-Ueno’s isomonodromic deformation equation:

Theorem 6.2 ( [Boa99)). The isomonodromic connection on the fibre bundle M* of ex-
tended moduli spaces is a flat symplectic connection, i.e, the local analytic diffeomorphisms
induced by the isomonodromic connection between the fibres of M* are symplectic diffeo-

morphisms.

6.2 The Computations of Stokes Matrices

As we mentioned before, the Stokes matrices are very important invariants in the theory
of linear ODEs, thus it is our natural mission to compute them. However, even in the case of
2nd order, the computations of them are rather complicated. For example, Prof. Xiaomeng

Xu gave an explicit formula of the Stokes matrices of the following ODE [Xul6]:

)\1 u a
dy )\2 b Uo

= +
dz 22 z

although this is a very simple case, the computation is already very complicated.

The difficulty is, when we do the re-summation process of a formal solution Y, for
example, the Borel-Laplace transformation, there will be singularities appeared after doing
the Borel transformation, if the singularities are poles, the Stokes matrices can be computed
by the residue formula, however, in the most of the cases, the singularities are even worse,
they will be essential singularities, hence the residue formula cannot show its power any
more. In the late 20th century, the French mathematician J.Ecalle developed a method
called the Alien calculus [SM10], which are now turned out to be a powerful tool to deal
with the essential singularities.

There are also some algebraic ways to compute the Stokes matrices. In [dHMS20], the
authors used Kashiwara’s Riemann-Hilbert correspondence for holonomic D—modules to
compute the Stokes matrices attached to irregular singularities arises from Fourier-Laplace
transforms of regular systems, and then in [HJ22], the authors used the similar method to

compute the Stokes matrices of the generalised Airy’s equations.
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6.3 A Glance at Nonabelian Hodge Theory

When a compact Riemann surface X is given, one can consider two different but
equivalent things, the first one is the irreducible representation of the fundamental group
m1(X) — GL,(C), the other one is the (flat) holomorphic connections on holomorphic de-
gree 0 vector bundles. The Riemann-Hilbert correspondence on Riemann surfaces asserts
that there is a 1-1 correspondence between the holomorphic connections and the irreducible
representations of the fundamental groups (by taking holonomy representations), if we use
the terminologies in moduli spaces, this correspondence is saying that there is an isomor-

phism between the moduli spaces:
Mar(X,n) =2 Mp(X,n) := Homy, (7 (C); GL,(C))/GL,(C)

where Mggr(X,n) on the left hand side is the moduli space of holomorphic connections on
rank n degree 0 vector bundles £ — X, it will be called the de Rham site in our story,
and Mp(X,n), the moduli space of representations, will be called the Betti site.

In [NS65], Narasimhan and Seshadri found the equivalence between the moduli space of
stable vector bundles U,,(X) and the moduli space of irreducible unitary representations of
m1(X). Later, Hitchin, Simpson and some other mathematicians found that it will be better
to consider the “complex version”, then the notion of Higgs bundles yields.

A Higgs bundle (£, ®) is just a holomorphic vector bundle E together with an extra
Higgs field ® € T'(Q! ® End(F)), we will use Mpoi(X,n) to denote the moduli space of rank
n degree 0 Higgs bundles, this will become the 3rd site of our story, namely, the Dolbeault

Site. These 3 sites are isomorphic [Sim92]
.A4DOK)(,N)§¥.A4d3()(,n>QE.A4B()(,H)

In Hodge theory, we have Hodge decomposition for any compact Kéhler manifold X
[Voi03]:
HY(X;C) = € H"9(X;C)

pt+q=k
when we take k = 1:
H'(X;C) = H"(X;C) e HOV(X;C)

applying Huerwitz theorem and Dolbeault theorem [Huy05], we will have:
Hom(m (X);C) = H(X; QY @ H'(X; Ox)

Recall that the holomorphic vector bundles can be classified by the 1st cohomology
group of non-Abelian sheaf H'(X,GL,) (the cocycles are exactly the transition functions).
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Hence a Higgs bundle (E,®) can be identified with an element in H°(X;End @ Q') ®
HY(X,GL,), which is a non-Abelian analogue of the right hand side in Hodge theory, and
by replacing C to a non-Abelian group GL,(C), the left hand side becomes the Betti site.
So, the correspondence between Dolbeault sites and Betti sites is a non-Abelian analogue of
Hodge theory.

So now, we can aware that what we’ve done so far is a generalisation on the de Rham
site, by replacing the holomorphic connections to the meromorphic ones, and the Betti site
is no longer the representations of the fundamental group, but a groupoid. In Boalch’s later
work [Boal3] [BB04], he established a meromorphic version of the correspondence in those

3 different sites, and called it the “wild non-Abelian Hodge theory”.
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