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摘 要

本文研究了 P1 的平凡向量丛上亚纯联络的模空间 M̃∗(A)，我们证明了这个模空间

同构于余伴随轨道的辛商，从而继承了一个辛结构。

受到亚纯线性常微分方程的 Stokes 现象的启发，我们还研究了亚纯联络的 Stokes 矩
阵，即由联络诱导的一个群胚 Γ̃的 Stokes表示，而后我们研究了所有这些表示构成的模空
间 M̃(A)，并且给出了在 P1 上度为 0 的向量丛上的 Riemann-Hilbert 对应，即度为 0 的
向量丛上的亚纯联络的模空间 M̃0(A) 同构于 Stokes 表示的模空间的一个度为 0 的分支
M̃0(A). 受 Atiyah 和 Bott 工作的启发，我们利用带有极点的 C∞ 平坦联络的模空间再次

得到了 M̃0(A)，从而 M̃0(A) 也继承了一个辛结构。

最后，我们证明了 Riemann-Hilbert 映射是一个辛映射。

关键词: 辛几何，Stokes 矩阵，单值化，亚纯联络

ABSTRACT

We studied the symplectic structure on the moduli space M̃∗(A) of meromorphic
connections on trivial bundles over P1, and proved it is a symplectic quotient of some
coadjoint orbits, hence it inherits a symplectic structure.

Then, inspired by the Stokes phenomenon of meromorphic linear ordinary differen-
tial equations, we also investigated the Stokes data of the meromorphic connections,
namely, the Stokes representation of a groupoid Γ̃, we then studied the moduli space
of the Stokes representations, and proved the Riemann-Hilbert correspondence in the
case of degree zero bundles, i.e, the moduli space of meromorphic connections on degree
zero bundles over P1, denoted by M̃0(A), is isomorphic to the degree zero-component
of the moduli space of Stokes representations, denoted by M̃0(A).

Motivated by Atiyah and Bott’s work, we obtained the moduli space M̃0(A) from
the moduli space of C∞ flat connections with poles, this gives a symplectic structure
on M̃0(A).

Finally, we showed Riemann-Hilbert correspondence is symplectic.

Key Words: Symplectic Geometry; Monodromy; Stokes Matrices; Meromorphic
Connections
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Notation

A the collection of anti-Stokes directions
A = ( 1A0, ..., mA0) the data of irregular/formal type near each pole ai

A0 a diagonal matrix of meromorphic functions on C
with pole only at z = 0 and has no holomorphic part

ÃD(A) the collection of C∞ connections with poles
on the divisor D and with irregular type A

Ãfl the collection of flat C∞ singular connections
Aut(E) the bundle automorphisms of E
Bk the subgroup of Gk with constant equals to identity
bk the Lie algebra of Bk

C[[z]] the ring of formal power series
C{z} the ring of convergent power series

D = k1a1 + · · ·+ kmam an effective divisor on P1

(df)p the differential map of f at p
E −→ P1 a complex vector bundle of rank n on P1

(E,∇) a generic meromorphic connection on E

with formal type A

(E,∇, g) a generic meromorphic connection on E with
formal type A and compatible framing g

F̂ ∈ G[[z]] the formal gauge transformation
G = GLn (C

∞ (P1)) the gauge transformation group of trivial bundle
G1 the subgroup of G containing the elements with taylor

expansion equals to identity
g = ( 1g0, ...,

mg0) the data of compatible framing near each pole ai
Γ̃ the groupoid induced by some A

Gk = GLn

(
C[ζ]/ζk

)
the (k − 1)−jet group

gk the Lie algebra of Gk

GLn(C) general linear group
gln(C) the general linear algebra, the Lie algebra of GLn(C)

GLn(C[[z]]) = G[[z]] the general linear group with entries in C[[z]]
GLn(C{z}) = G{z} the general linear group with entries in C{z}

H (A0) the moduli space of pairs
(
A, F̂

)
Li Laurent map defined by taking Laurent

expansion at the pole ai
Λ = ( 1Λ, ...,m Λ) the data of the exponents of formal monodromy
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M(A) the moduli space of all generic meromorphic connections
(E,∇) with formal type A

M̃(A) the extended moduli space of all generic
meromorphic connections (E,∇, g) with irregular type A

M∗(A) the moduli space of gneric meromorphic connections
on trivial bundles with formal type A

M̃∗(A) the extended moduli space of meromorphic connections
on trivial bundles with irregular type A

M̃0(A) the extended moduli space of meromorphic connections
on degree 0 bundles with irregular type A

M̃(A) the moduli space of Stokes representations of the
groupoid determined by A

M̃0(A) the moduli space of degree 0 Stokes representations of the
groupoid determined by A

O the sheaf of holomorphic functions
OD the sheaf of meromorphic functions with poles on D

Oi the coadjoint orbit of the jet group Gki containing iA0

Õi the extended coadjoint orbit
Ω(∇) the curvature of a connection ∇
Ωr

D the sheaf of singular smooth r−forms with poles on D

Secti the i−th Stokes sector
Ŝecti the i−th super-Stokes sector

Stod (A
0) the group of Stokes factors associated to the direction d

Σi

(
F̂
)

the re-summation (Borel-Laplace) of F̂ on some Stokes sector

Ŝyst (A0) the collection of pairs
(
A, F̂

)
where A = F̂ [A0]
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0 Introduction
It has been a long history in studying the moduli spaces derived from the Riemann

surfaces, for example, the moduli space of complex structures, the moduli space of stable
holomorphic vector bundles, the moduli space of representations of the fundamental group
of a Riemann surface, etc. All these moduli spaces have complex structures, however, these
structures highly depend on the complex structure of the underlying Riemann surface.

Goldman in [Gol84] showed that the symplectic structure on the moduli space of fun-
damental group representations just depends on the topology of the Riemann surface, which
is also called by “the symplectic nature” of the representations. So, it is natural to ask,
whether other moduli spaces will have the symplectic nature?

In [AB83], Atiyah and Bott found the symplectic nature of flat connections on the prin-
cipal bundles over a Riemann surface. In this thesis, we will discuss an extended version of
Atiyah-Bott’s framework—the symplectic nature of meromorphic connections on holomor-
phic bundles. Although most of the results remain true on an arbitrary compact Riemann
surface, most of our works will be discussed over the complex projective line P1 for conve-
nience.

To be specific, a key result is [Boa99]:
(1). The moduli space M∗(A) of generic meromorphic connections with formal type

A = {A1, ..., Am} on P1 × Cn is isomorphic to the symplectic quotient:

M∗(A) ∼= O1 × ...×Om//GLn(C)

(2) The extended moduli space M̃∗(A) of generic meromorphic connections with irregular
type A = {A1, ..., Am} and compatible framing g = (g1, ..., gm) on P1 × Cn is isomorphic to
the symplectic quotient:

M̃∗(A) ∼= Õ1 × ...× Õm//GLn(C)

As another approach, there is a more topological aspect of meromorphic connections.
Recall that a meromorphic connection can be locally regarded as a linear ordinary differen-
tial equation, i.e, a meromorphic linear system. According to Riemann-Hilbert correspon-
dence—there is a 1-1 correspondence between the Fuchsian systems and the monodromy
representations of the fundamental group. However, for non-Fuchsian systems, that is the
order of the poles of the coefficient matrix is higher than 1, the monodromy cannot describe
the behavior of the solution of a system completely, there is more deeply phenomenon, called
the Stokes phenomenon.

The Stokes phenomenon arises from the multi-summability of a divergent series. To be
specific, for linear systems dy = Ay, dy = A0y, if A is formally gauge equivalent to A0, i.e

7



there exists a formal gauge transformation F̂ ∈ GLn(C[[z]]) such that

F̂ [A] =
(
dF̂
)
F̂−1 + F̂AF̂−1 = A0

then the solutions ofA are differed by a left multiplication of F̂ to the solutions ofA0. In order
to obtain the convergent solutions, one can do the re-summation of those formal solutions,
for example, the Borel-Laplace transformation [SM10], however, the new solution obtained
by the re-summation process may only converge in some sectorial neighborhoods around the
poles of A0, and on the overlap of two different sectors, the solutions can be very different,
they will be differed by a multiplication of a invertible constant matrix, such matrices are
called the Stokes factors, they are completely invariants of a linear ODE [VdPS12].

Similar to the monodromy representations of the fundamental group, there is a more
general notion, called the Stokes representation of a groupoid, and in this case, the Riemann-
Hilbert problem is asking, does there exists a 1-1 correspondence between the meromorphic
linear systems and the Stokes representations of the underlying groupoid?

In this thesis, we will study the moduli space of the Stokes representations M̃(A).
Then, the Riemann-Hilbert correspondence in the case of degree 0 bundles will be given,
that is [Boa99]:

The extended moduli space M̃0(A) of meromorphic connections on degree 0 bundles
with irregular type A is isomorphic to the degree 0 component of M̃0(A). This isomorphism
is called the Riemann-Hilbert map.

As the third approach to meromorphic connections, we will generalise Atiyan-Bott’s
framework. We will consider the moduli space of C∞ flat singular connections on C∞-trivial
bundles, denoted by Ãfl(A)

/
G1, this moduli space is surprisingly isomorphic to M̃0(A).

Following Atiyah and Bott [AB83], the moduli space Ãfl(A)
/
G1 is actually the symplec-

tic quotient of the Hamiltonian group action of G = GLn(C
∞(P1)) on ÃD(A). Hence by

Riemann-Hilbert correspondence, M̃0(A) and M̃0(A) both inherit a symplectic structure.
Finally, if we restricted the Riemann-Hilbert map to M̃∗(A), we will show that this map

is in fact symplectic. The key story is involved in the following commutative diagram [Boa99]:

M̃0(A) Ãfl(A)/G1

Õ1 × · · · × Õm//GLn(C) M̃∗(A) M̃0(A)

σ̃,∼=

ṽ,∼=

ℓ̃,∼=

i

ν̃

The arrangement of this thesis is as follows:
Chapter 1 will give a quick review of some necessary background materials, including

the notions of meromorphic connections, Stokes matrices, Lie groups and their actions,
symplectic geometry, etc.
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In chapter 2, we will give the symplectic structure on the moduli space of meromorphic
connections by establishing the isomorphism between M̃∗(A) and the symplectic quotient
Õ1 × · · · × Õm//GLn(C), the main results are Theorem 2.1 and Theorem 2.2.

Then, in chapter 3 we will study the Stokes data of the meromorphic connections. First
of all, we will introduce the notion of Stokes representations, then, we will define the moduli
space of the Stokes representations, M̃(A), and we will show that two connections are in the
same equivalent class if and only if they induce the equivalent Stokes representations, this is
the one side of Riemann-Hilbert correspondence. At last, we will give an explicit description
of M̃(A). The main results are Theorem 3.1 and Theorem 3.2.

Chapter 4 will introduce the third approach to the meromorphic connection. First, we
will introduce the basic notion of C∞ singular connections with poles on D on a C∞ trivial
vector bundle, we will see the moduli space of meromorphic connections on degree 0 bundles
is actually isomorphic to the moduli space of flat connections Ãfl(A)/G1, the latter is also
isomorphic to the moduli space of degree 0 Stokes representations M̃0(A), which induces
the Riemann-Hilbert correspondence on degree 0 bundles. At last, we will give a symplectic
structure on the moduli space Ãfl(A)/G1 by a similar method of Atiyah-Bott, which shall
give a symplectic structure on M̃0(A) as well. The main theorems are Theorem 4.2, Theorem
4.3 and Theorem 4.4.

In chapter 5, we will show the Riemann-Hilbert map is actually symplectic, the main
theorem is Theorem 5.1.
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1 Background Materials

1.1 Meromorphic Connections

Although the majority of the discussion will be taken place on the trivial bundle over
P1, we still need some general settings. Now, let X be a compact Riemann surface, E is a
holomorphic vector bundle with rank n, D = k1a1 + ...+ kmam > 0 is an effective divisor on
X in which each ki > 0 and ai ∈ X, which will contain the information of poles.

Definition 1.1 (Meromorphic Connection [GH14]). A meromorphic connection with poles
on the divisor D (each ai is a pole of order ki) is a map:

∇ : E −→ E ⊗K(D)

satisfying Leibniz rule: for any f ∈ OX and s ∈ E , we have

∇(f · s) = (df)⊗ s+ f∇s

Here E is sheaf of local sections of E, K(D) is the sheaf of meromorphic 1-forms with
prescribed poles on D, OX is the sheaf of holomorphic functions on X.

Next, we will give a local depiction of a meromorphic connection.

Remark 1.1. For a local trivialization φi : E|Ui
−→ Ui × Cn near each pole ai, ∇ can be

expressed by Laurent expansion

∇ = d− Ai

= d−
(

iAki

zki
+ · · ·+

iA1

z
+ Ai 0 + · · ·

)
dz

where iAj ∈ End(Cn). Hence locally, it is a matrix-valued meromorphic 1-form.

The second part in right hand side will sometimes be denoted by PPi + HPi, which
stands for the principal part and holomorphic part in a Laurent expansion respectively.
Besides, iAki/z

ki + · · · + Ai 2/z
2 is called the irregular part, iA1 is called the residue

part, these terminologies arise form the analytical theory of linear ordinary differential
equations [BJL79].

Definition 1.2 (Residue of a Meromorphic Connection). In the local trivialization of E
near the pole ai defined above, we define the residue of a meromorphic connection ∇ at the
pole ai to be the trace of iA:

Resai(∇) := Tr
(
Ai
)

10



We define the residue of ∇ to be the sum of all residues at each pole ai:

Res(∇) :=
m∑
i=1

Tr
(
Ai
)

Remark 1.2. It is not hard to see that the trace of iA doesn’t depend on the choices of
local trivialization. Indeed, if we choose another trivialization ψi : E|Vi

−→ Vi × Cn, where
ai ∈ Vi ∩ Ui, then the map

gi(z) = φi ◦ ψ−1
i : Ui ∩ Vi −→ GLn(C)

defines a matrix-valued holomorphic function, and the expressions in different local
trivialization will be differed by a gauge transformation:

iA′ = gi(z) A
i g−1

i (z) + (dgi)g
−1
i

Since the first part of right hand side doesn’t change the eigenvalues and diagonalis-
ability, the second part is holomorphic which will never impact on the principal part, this
definition is well-defined. ■

The meromorphic connections are not permitted to be appearing arbitrarily, it was
controlled by the properties of the vector bundle E, a theorem of Pereira [Per22] asserts
that, the Chern class determined by the residue divisor of a flat meromorphic connection
∇ on a line bundle L over a compact complex manifold X must equal to the negative first
Chern class of the line bundle:

c(Res(∇)) = −c1(L) ∈ H2(X,C)

For low-dimensional case, especially for X = P1, ∇ is identically flat, and the proof will be
easier.

Lemma 1.1. Let ∇ be a meromorphic connection on a holomorphic line bundle L over P1,
which has poles on the divisor D =

∑
i kiai, then residue of ∇ equals to the negative degree

of the line bundle L:
degL = −Res(∇)

proof. Let
U1 =

{
[x, y] ∈ P1|x 6= 0

}
U2 =

{
[x, y] ∈ P1|y 6= 0

}
be the standard open cover on P1, the transition function of L is given by [For12]

g12[x, y] =

(
x

y

)degL

: U1 ∩ U2 −→ C∗

11



Without the loss of the generality, we can assume all poles of ∇ lie in U1, i.e, a1, .., am ∈ U1.
Now, we choose a nowhere vanishing section of L on U1, namely σ1 ∈ Γ(U1;L), and σ2

a section of L on U2 determined by

σ2 = g12σ1 : U2 −→ L (∗)

hence no hard to see σ2 is also nowhere vanishing on U2, thus we can find two forms η1, η2 ∈
K(D) such that

∇σ1 = η1 ⊗ σ1 ∇σ2 = η2 ⊗ σ2

Hence by (∗), we have
dg12
g12

= η2 − η1

As we assuming U1 containing all poles of ∇, hence η2 is in fact a holomorphic 1-form, and
η1 has the same residue as ∇, i.e, Resη1 = Res∇.

Now, we use the coordinate z = x/y on U1 ∩ U2, and consider the equality

η1 = η2 −
degL
z

by taking residues on both sides yields:

Res(∇) = Res(η1) = − degL ■

Remark 1.3. This result remains true for a rank n ⩾ 2 vector bundle E over P1, in fact,
we can consider the induced connection on the determinant line bundle

∧nE, and observe
that the residue will not be changed.

Next, we will define a kind of meromorphic connections with a good property, namely
generic, which will play a vital role in the rest of this thesis.

Definition 1.3 (generic connection [Boa99]). A meromorphic connection ∇ is generic, if at
each ai, the leading coefficient iAki is diagonalisable and the eigenvalues aredistinct ki ⩾ 2

distinct (modZ) ki = 1

Remark 1.4. Again, this definition is independent of the choice of local trivialisation (cf.
Remark 1.2) hence well-defined.

Now, since the generic connection is of our interests, the leading coefficient is always
diagonalisable and having enough distinct eigenvalues, we need to know how to “change” a
generic connection into the one with diagonal leading coefficient:

12



Definition 1.4 (Compatible Framing [Boa99]). A compatible framing at the pole ai asso-
ciated to a generic connection ∇ is an isomorphism

gi : Eai

∼=−→ Cn

such that the leading coefficient of ∇ is diagonal along any local trivialization which extends
gi .

Again, locally, it means that there is an gi ∈ GLn(C) such that igAki g
i −1 is diagonal.

It is natural to give an “idol” among those generic meromorphic connections, this idol
shall have a very nice form—it is diagonal for every term.

Definition 1.5 (Nice Formal Form [Boa99]). At each pole ai, a nice formal form, which
denoted by d − Ai 0, is a meromorphic connection together with a local trivialization such
that the local expression is diagonal and has no holomorphic part:

Ai 0 =

( iΛ0
ki

zki
+ · · ·+

iΛ0

z

)
dz

:= d( Qi ) + Λi 0dz

z

where iQ is a diagonal matrix of meromorphic functions and iΛ0 is a diagonal constant
matrix.

A connection ∇ with compatible framing ig at ai is said to have irregular type iA0

if ig extends to a formal trivialization near ai in which the difference of ∇ and d − Ai 0 is a
matrix of 1-forms with just simple pole.

Remark 1.5. Again, we may assume ∇ = d− A in some local trivialization near ai, it has
a irregular type d− Ai 0 implies there exists a g(z) ∈ GLn(C[[z]]) with g(ai) = gi such that

gAg−1 + (dg)g−1 = d( Qi ) + Λi
dz

z

these iΛ are called the exponents of formal monodromy.

Now, we denoted by A = ( A1 0, ..., Am 0) the data of irregular types near each pole ai,
and g = ( g1 , ..., gm ) the data of compatible framing.

The moduli space we will concern is defined as follows

Definition 1.6 (Moduli Space [Boa99]). (1) The moduli space of meromorphic connections
on E, denoted byME(A), is the set of gauge isomorphism classes of all generic connections
on E which are formal equivalent to A near each pole ai.

ME(A) = {∇ generic : formal equivalent toA}
/

Aut(E)

13



(2) Similarly, the extended moduli space M̃E(A) is defined as the set of gauge isomor-
phism classes of all generic connections on E with irregular type A near each pole ai:

M̃E(A) = {(∇, g) generic : has irregular typeA via g}
/

Aut(E)

Here Aut(E) is the gauge transformation group of E (bundle automorphisms).

Remark 1.6. (1). In the rest part of this thesis, the most interesting case will be E =

P1 × Cn, and those moduli spaces will be denoted by M∗(A) and M̃∗(A) respectively.
(2). The collection of all equivalent classes of pairs (E,∇) will be denoted by M(A),

and for pairs (E,∇, g) will be denoted by M̃(A).
(3). By Lemma 1.1, the moduli space ME(A) is non-empty unless

m∑
i=1

Tr
(
Λi 0
)
= − degE

where iΛ is the residue part of the nice formal form iA0 appeared in Definition 1.5, and the
extended moduli space M̃E(A) is non-empty unless

m∑
i=1

Tr
(
Λi
)
= − degE

where iΛ is the exponents of formal monodromy of ∇, which appeared in Remark 1.5.

1.2 Stokes Matrices of Linear Ordinary Differential Equations

A very important case in ordinary differential equations is the linear case on the complex
plane:

dy = A(z)y

where A(z) is a matrix-valued meromorphic 1-form on C with poles a1, ..., am.
However, it is more interesting to let the linear ordinary differential equations be defined

at ∞, hence then, this differential equation is defined on the complex projective line P1, in
this sense, the study of meromorphic connections on P1 is equivalent to study the local theory
of linear ODEs.

Different from the nonlinear equations, the solutions of a linear one will only have
singularities near the poles of A(z), the behavior of the solutions near these poles are very
interesting. A very significant invariant will be appeared near these poles, called the family
of Stokes matrices, it will be introduced in this section.

14



1.2.1 Stokes Matrices

We will assume our linear ODEs are generic (cf. Definition 1.3) and with only one pole
at z = 0. Let dy = A0y be a diagonal generic meromorphic linear ODE, we can write A0 as

A0 = dQ+ Λ0dz

z

here Q is a diagonal matrix of meromorphic functions, Λ0 is a diagonal constant matrix.
Now, write the entries of Q in terms of Laurent expansions:

Q =


q1

q2
. . .

qn


where qi ∈ C{z}[1/z], define qij to be the leading term of qi − qj, for example, if we write

qi − qj =
a

zk−1
+

b

zk−2
+ · · ·

then qij = a/zk−1.

Definition 1.7 (Anti-Stokes Directions [Boa99]). The anti-Stokes directions A ⊂ S1 are the
directions d ∈ S1 such that qij(z) ∈ R<0 for all z on the ray specified by d, for some ij.

Let d be an anti-Stokes direction, we define the following data of this direction:
(1). The roots of d are the ordered pair (ij) supporting d:

Roots(d) = {(ij) : qij(z) ∈ R<0, z ∈ R>0e
id}

(2). The multiplicity Mult(d) is the cardinality of Roots(d).
(3). The group of Stokes factors associated to d is the group

Stod(A
0) = {K ∈ GLn(C) : Kij = δij unless (ij) ∈ Roots(d)}

Remark 1.7. It is not hard to find the following facts about the anti-Stokes directions:
(1). The Stokes group Stod(A

0) is a unipotent subgroup of GLn(C)
(2). The anti-Stokes directions A have π/(k − 1) rotational symmetry, here k is the

order of the pole 0, i.e, if qij(z) ∈ R<0, then

qij

(
z · e

π
√

−1
k−1

)
∈ R<0

hence the number of all anti-Stokes directions r = |A| is divisible by 2k − 2, we denote
` = r/2(k − 1).
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By the last item in the Remark 1.7, we can refer to an `−tuple

d = (d1, ..., dℓ) ⊂ A

of consecutive anti-Stokes directions as a half-period, the half-period will define an order of
the set {q1, ..., qn}:

qi < qj ⇔ (ij) is a root of d ∈ d

Lemma 1.2 ( [Boa99]). For each half-period d, there exists a permutation matrix P which
can upper/lower-triangularize all matrices in the group Stod(A

0) for any d ∈ d.

proof . Indeed, define π to be a permutation of the set {1, ..., n}:

π(i) < π(j) ⇔ qi < qj ⇔ (ij) is a root of d ∈ d

define P = (P )ij, where (P )ij = δπ(i)j, this is the desired permutation matrix. ■

Moreover, we have a much stronger statement:

Lemma 1.3 ( [BJL79]). (1). Let d = (d1, ..., dℓ) be a half-period, we have the isomorphism:∏
d∈d

Stod(A
0) ∼= PU±P

−1

(K1, ..., Kℓ) 7→ Kℓ · · ·K2K1

where U± is the upper/lower-triangulated subgroup of GLn(C).
(2). If we label the rest of A as dℓ+1, ..., dr in the positive order (anti-clockwise), we

have the isomorphism: ∏
d∈A

Stod(A
0) ∼= (U+ × U−)

k−1

(K1, ..., Kr) 7→ (S1, ..., S2k−2)

here Si = P−1Kiℓ · · ·K(i−1)ℓ+1P .

Example: We assume

A0 = d


i
z3

1
z2

1
z3


then q12 =

√
−1/z3, q13 = (

√
−1− 1)/z3, q23 = −1/z3, also qij = −qji, hence we can

determine all anti-Stokes directions in following picture:

All these 18 directions are of multiplicity 1, the Stokes group for the direction, d = π/4
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The anti-Stokes directions of A0

for instance, is the collection of all invertible matrices with the form

Stoπ
4
(A0) =



1 ∗

1

1

 ∈ GLn(C)

∣∣∣∣∣∣∣∣ ∗ ∈ C


Choose a half-period, namely d = {0, π/6, π/4}, the permutation matrix associated to

this half-period is

P =


0 1 0

1 0 0

0 0 1


all matrices in

∏
d∈d Stod(A

0) can be upper-triangularized via P .

1.2.2 The Local Moduli Space H (A0)

Next, we shall focus on the Stokes matrices for the linear ODE that with formal type
A0. We denote Syst (A0) the set of all linear ODEs with formal form A0, i.e:

Syst
(
A0
)
=
{
d− A|A = F̂

[
A0
]
, F̂ ∈ GLn(C[[z]])

}
here F̂ [A0] represents for the gauge transformation on A0:

F̂
[
A0
]
:=
(
dF̂
)
F̂−1 + F̂A0F̂−1

17



Then, we will define another set which is larger than Syst(A0) (by considering the data of
formal gauge transformation F̂ as well):

Definition 1.8 ( [Boa99]). Define

Ŝyst
(
A0
)
=
{(
A, F̂

)
|A ∈ Syst

(
A0
)
, F̂ ∈ GLn(C[[z]]), A = F̂

[
A0
]}

an element
(
A, F̂

)
∈ Ŝyst (A0) is called a marked pair.

Let G{z} = GLn(C{z}) acts by gauge transformation on Ŝyst(A0), define:

H(A0) = Ŝyst(A0)
/
G{z}

This H(A0) is the local version of the extended moduli space M̃(A), and an element
in H(A0) is a gauge equivalent class of linear ODEs which are formal equivalent to A0.

Next, we define a labelling convention of the anti-Stokes directions of A0. First, we
fixed a point p in one of the Stokes sectors bounded by two consecutive anti-Stokes rays,
label the first anti-Stokes ray when turning in a positive sense (anti-clockwise) from p as d1,
and label the rests as d2, ..., dr, denote

Secti := Sect(di, di+1)

to be the i−th sector, and

Ŝecti = Sect
(
di −

π

2k − 2
, di+1 +

π

2k − 2

)
the i-th supersector.

labelling convention

Lemma 1.4 ( [Boa99]). If F̂ ∈ GLn(C[[z]]) is a formal transformation such that A = F̂ [A0]

18



has convergent entries. Set the radius of the sectors Secti and Ŝecti to be less than the radius
of convergence of A, then the following statements hold:

(1). The formal transformation can be replaced by a convergent one, i.e, one can
determine an invertible matrix of holomorphic functions (in a canonical way) Σi(F̂ ) ∈
GLn(O(Secti)) on each sector Secti such that

Σi(F̂ )
[
A0
]
= A

(2). Σi

(
F̂
)

can be analytically continued to the super-sector Ŝecti.
(3). For g ∈ G{z} and t ∈ T (the toric group T can be viewed as the diagonal subgroup

of GLn(C)), we have
Σi

(
gF̂ t−1

)
= gΣi

(
F̂
)
t−1

The canonical method mentioned in the last lemma is called the Borel-Laplace trans-
formation [SM10].

Now, choose a branch of log z along d1 and extend it in a positive sense across other
sectors. Recall that, if we write A0 = dQ + Λ0dz/z, then the solution of the differential
equation dy = A0y can be write as zΛ0

eQ (in the given branch), and for any A = F̂ [A0], the
solution of dy = Ay can be write as

Yi = Σi

(
F̂
) [
A0
]
zΛ

0

eQ

on each sector Secti, i = 1, ..., r. We denote

κi := Σi

(
F̂
)−1

· Σi−1

(
F̂
)
∈ GLn

(
O
(

Ŝecti ∩ Ŝecti−1

))
Remark 1.8. κi asymptotic to 1 at 0 in the sector Ŝecti ∩ Ŝecti−1, moreover:

κi
[
A0
]
= A0

Definition 1.9. The Stokes factors of a linear ODE (A, F̂ ) ∈ Ŝyst(A0) are

Ki := e−Qz−Λ0 · κi · zΛ
0

eQ i = 1, ..., r

Lemma 1.5 ( [Boa99] [VdPS12]). (1). The Stokes factor Ki is constant and lies in the group
Stodi(A

0) for each i.
(2). Stokes factors are the complete invariants of a linear ODE, i.e, (A, F̂ ) and (A′, F̂ ′)

are in the same equivalent class in H(A0) if and only if they have the same Stokes factors.

proof . (1). To be simplified, we write Y0 = zΛ
0
eQ, which is the fundamental solution
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of dy = A0y, hence by remark 1.5, we have

dKi = d
(
Y −1
0

)
· κi · Y0 + Y −1

0 · dκi · Y0 + Y −1
0 · κi · dY0

= −A0Y −1
0 κiY0 + Y −1

0 κiA
0Y0 + Y −1

0 dκiY0

= −A0Y −1
0 κiY0 + Y −1

0 κiA
0Y0 + Y −1

0

(
A0κi − κiA0

)
Y0

=
(
Y −1
0 A0 − A0Y −1

0

)
κiY0

= 0

the last step comes from the fact that A0 and Y0 are diagonal matrices.
Hence Ki is a constant matrix. To see Ki ∈ Stodi(A

0), by Remark 1.8, we know

e−QKie
Q = z−Λ0

κiz
Λ0 −→ In

as z → 0 within the intersection Ŝecti ∩ Ŝecti−1, it forces the (m,n)−th entry of Ki to be

(Ki)mn = δmn

unless eqm−qn −→ 0 as z → 0, this is equivalent to Ki ∈ Stodi(A
0).

(2) follows directly from the 3rd statement in Lemma 1.4. ■

Remark 1.9. By Lemma 1.2, for each Stokes group Stodi (A
0), there exists a permutation

matrix Pi such that all matrices in that group can be upper/lower-triangularized by Pi, we
will call the upper/lower-triangular matrices

Si := PiKiP
−1
i

the Stokes Matrices of the ODE d− A = 0.

Combining with Lemma 1.2 and Lemma 1.4, we have

Lemma 1.6 ( [BJL79]). We have the isomorphism:

H
(
A0
) ∼= (U+ × U−)

k−1

[
A, F̂

]
−→ (S1, ..., S2k−2)

where Si = P−1Kiℓ · · ·K(i−1)ℓ+1P , that is the product of all Stokes factors of
[
A, F̂

]
∈ H (A0)

in the i−th half-period in a converse order.

Remark 1.10. In the Galois theory of linear ODEs (i.e, the differential Galois theory),
the Stokes factors are the significant elements in the differential Galois group Gal

(
A, F̂

)
of
[
A, F̂

]
, in fact, this group is a linear algebraic group generated by all Stokes matrices

20



together with the differential Galois group of Gal (A0) [VdPS12], that’s why we also call
them the “complete invariants” of a linear ODE.

1.3 Lie Groups Actions

In this section, we will introduce some basic notions about Lie group actions on mani-
folds. In general, groups are used to describe the symmetries of some objects, for example,
the dihedral group Dn, we can use the groups actions on a set to investigate the symmetries
of that set (and conversely, we can use one group acts on various sets to recover the structure
of the group, that is the idea of representation theory), sometimes, the symmetries of a set
is not discrete, the circle S1 for instance, it has continuously symmetries, so we need to use
a kind of groups which admitted a “continuity” structure to characterise such symmetries,
that is the Lie Groups.

Definition 1.10 (Lie groups actions [Aud04]). Let G be a Lie group, M a smooth manifold,
a G−action on M is a group morphism

G −→ Diff(M)

where Diff(M) is the diffeomorphism group of M .

An action of G on M will be denoted by

G×M −→M, (g, x) 7→ g · x

Example 1. The Lie group G itself is a manifold, and G acts itself by left multiplication:

G×G −→ G, (g, h) 7→ Lgh := gh

notice that the tangent map is actually an isomorphism between

(dLg−1)
g
: TgG −→ g

hence

Lemma 1.7. The tangent bundle TG and cotangent bundle of a Lie group are both trivial:

TG ∼= G× g T ∗G ∼= G× g∗

Example 2. G can also act on itself by adjoint action:

G×G −→ G, (g, h) 7→ adgh := ghg−1
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notice that the differential map is an automorphism of the Lie algebra g of G:

Adg := (d adg)e : g −→ g

we call the map
Ad : G −→ GL(g), g 7→ (d adg)e

the adjoint representation of G on GL(g). Similarly, for every g ∈ G, the adjoint action
also induces a representation of G on the dual Lie algebra g∗ by the cotangent map:

Ad∗ : G −→ GL(g∗), g 7→ Ad∗
g := (d adg)

∗
e

where g 7→ (d adg)
∗
e is the cotangent map of adg, this representation is called the coadjoint

action of G on g∗.

If two elements in G are very “close”, then we can “differentiate” this action, that yields
the notion of fundamental vector field.

Definition 1.11 (Fundamental Vector Field [Aud04]). If G acts on M , for any X ∈ g, the
vector field defined by

X(x) :=
d

dt

∣∣∣∣
t=0

(exp tX) · x

is called the fundamental vector field of X, where exp : g −→ G is the exponential map.

Lemma 1.8 ( [Aud04]). The fundamental vector field of X ∈ g associated to the adjoint
action on g is

X(Y ) = [X,Y ]

and the one associated to the coadjoint action is

〈X(ξ), Y 〉 = 〈ξ, [Y,X]〉

where X,Y ∈ g, ξ ∈ g∗, 〈·, ·〉 is paring

〈·, ·〉 : g∗ × g −→ R

proof . First, for adjoint action g, let X,Y ∈ g, by definition, we have

X(Y ) =
d

dt

∣∣∣∣
t=0

(dadexp tX)e Y

=
d

dt

∣∣∣∣
t=0

d

ds

∣∣∣∣
s=0

(exp tX) exp sY (exp−tX)

= [X,Y ]
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for the case of coadjoint action on g∗, for any ξ ∈ g∗, observe that

〈X(ξ), Y 〉 = d

dt

∣∣∣∣
t=0

〈Ad∗
exp tXξ, Y 〉

=
d

dt

∣∣∣∣
t=0

〈ξ,Ad− exp tXY 〉

= 〈ξ, [Y,X]〉 ■

In practice, we call the map

g×M −→ TM, (X, x) 7→ X(x)

the infinitesimal action of G. When G is a connected compact Lie group, we have a good cor-
respondence property between Lie groups and Lie algebras, and some properties ofG−actions
can be reduced to the properties of its infinitesimal actions.

1.4 Symplectic Geometry and Hamiltonian Lie Groups Actions

Definition 1.12 (Symplectic Manifolds [Aud04]). A differential manifold M is called sym-
plectic, if there exists a smooth non-degenerate closed 2−form ω:

ωx : TxM × TxM −→ R

Here are several significant examples which will play an important role in this thesis.

Example 1 (cotangent bundle) For any smooth manifold M , its cotangent bundle T ∗M

has a natural symplectic structure, called the canonical symplectic form:
Suppose π : T ∗M −→M is the projection of the cotangent bundle, for p = (x, ξ) ∈ T ∗M ,
we can define its cotangent map:

(dπ)∗p : T
∗
xM −→ T ∗

p (T
∗M)

hence
αp := (dπ)∗pξ = ξ ◦ (dπ)p

defined a 1−form on T ∗M , it is called the Liouville 1-form or tautological 1-form, then the
formula

ω = dα

defined a symplectic form on T ∗M . If we choose a coordinate chart U ⊂M , the coordinate
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on T ∗U denoted by x1, ..., xn, ξ1, ..., ξn, then the Liouville 1-form can be locally expressed by

α =
n∑

i=1

ξidxi

hence the canonical symplectic form is

ω =
n∑

i=1

dxi ∧ dξi

There is a special case for the cotangent bundle, that is the cotangent bundle of a Lie
group G, by Lemma 1.7, T ∗G is trivial, and it is important to write down this canonical
symplectic form in terms of the operations on Lie groups and Lie algebras.

Lemma 1.9 ( [Boa99]). The canonical symplectic form on T ∗G ∼= G× g∗ at the point
(g, ξ) ∈ T ∗G is given by

ω(g,ξ)((X,φ), (Y, ψ)) = 〈φ, Y 〉 − 〈ψ,X〉 − 〈ξ, [X,Y ]〉

proof . Recall that, if α ∈ Ω1(M) is a 1-form on M , then for any vector field
X :M −→ TM , α(X) is a sooth function on M , and the exterior differential of α is
defined by

(dα)(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])

now, we use the left-trivialization to identify the tangent space T(g,ξ)T ∗G with g× g∗,
choose (X,φ) ∈ g× g∗, and the Liouville 1-form on T ∗G is given by

α(g,ξ)(X,φ) = 〈ξ,X〉

now for another (Y, ψ) ∈ g× g∗, we have

ω(g,ξ)((X,φ), (Y, ψ)) = (dα)((X,φ), (Y, ψ))

= (X,φ)(g,ξ)(α(Y, ψ))− (Y, ψ)(g,ξ)(α(X,φ))− α([(X,φ), (Y, ψ)])

= 〈φ, Y 〉 − 〈ψ,X〉 − 〈ξ, [X,Y ]〉 ■

Definition 1.13 (Hamiltonian Action, Moment Map [Aud04]). A Lie group G−action on a
symplectic manifold M is called Hamiltonian, if there exists a map

µ :M −→ g∗
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such that for any X ∈ g, the function defined by

µX(x) := 〈µ(x), X〉 :M −→ R

satisfies the condition
ιXω = −dµX

Lemma 1.10 (Symplectic Reduction [Aud04]). If 0 ∈ g∗ is a regular value of the moment
map µ, then there is a symplectic structure on the quotient space µ−1(0)/G, this space is
called the symplectic reduction of M , this quotient is called the symplectic quotient, denoted
by M//G
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2 Meromorphic Connections on Trivial Bundles over
P1

In this section we will give and prove the existence of the symplectic structure on the
moduli space defined in Definition 1.6, the main tool comes from the theory of moment maps
in symplectic geometry [Aud04]. From now on, we will concentrate on the trivial bundle
P1 × Cn.

2.1 Symplectic Nature of the Moduli Space

We first take a glance at what have been moduled by the gauge transformation group.
To be simplify, we assume a meromorphic connection has an expression near some pole:

∇ = d− A = d−
(
Ak

zk
+ · · ·+ A1

z
+HP

)
dz

where HP means the holomorphic part, ∇ is formal equivalent to A0 implies that there
exists a g(z) ∈ GLn(C[[z]]) such that

gAg−1 + (dg)g−1 = A0

If we write g(z) as
g(z) = g0 + g1z + · · ·+ gk−1z

k−1 + · · ·

where g0 ∈ GLn(C) and gi ∈ End(Cn), its inverse can be denoted by

g−1(z) = g−1
0 + · · ·

hence we have:

gAg−1 + (dg)g−1 =
(
g0 + · · ·+ gk−1z

k−1 + · · ·
)(Ak

zk
+ · · ·+ A1

z
+HP

)(
g−1
0 + · · ·

)
dz

the principal part of which is

(
g0 + · · ·+ gk−1z

k−1
)(Ak

zk
+ · · ·+ A1

z

)(
g0 + · · ·+ gk−1z

k−1
)−1

dz

Later, we will find those g0 + · · ·+ gk−1z
k−1 form a Lie group, called the jet group Gk, and

(Ak/z
k + · · ·+ A2/z

2)dz lies exactly in the dual Lie algebra g∗k of Gk.
As we can see, if a meromorphic connection is formal equivalent to A0 near some pole,

it must lie in the coadjoint orbit of the jet group Gk which containing the nice formal form.
So let’s start from the jet group.
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Definition 2.1 (Jet Group [Boa99]). The (k − 1)-jet group is defined as

Gk = GLn

(
C[ζ]/ζk

)
Remark 2.1. (1) An element g in Gk is an invertible matrix with entries of truncated
polynomials:

g(ζ) = g0 + g1ζ + · · ·+ gk−1ζ
k−1

where g0 ∈ GLn(C) and no invertible conditions on the rest coefficients.
(2) An element X of the Lie algebra gk of Gk can be denoted by

X = X0 +X1ζ + · · ·+Xk−1ζ
k−1

where Xi ∈ End(Cn). Hence it is an n2k dimensional complex vector space, and Gk is a n2k

dimensional complex Lie group.
(3) An element A in the dual Lie algebra g∗k is suggested to be write as

A =

(
Ak

ζk
+ · · ·+ A1

ζ

)
dζ

where dζ is just a symbolic notation, it has no meanings here. The pairing is given by

〈A,X〉 =
k∑

i=1

tr(AiXi−1) := Res0(Tr(A) ·X)

(4) There is a unipotent subgroup of Gk, namely

Bk = {g(z) ∈ Gk : g(0) = In}

where In is a identity matrix, a simple observation yields

Gk = GLn(C)n Bk

hence GLn(C) is also a subgroup of Gk. Moreover, it induces a decomposition on the level
of Lie algebras

gk = gln(C)⊕ bk

It is no wonder that we have in the dual level:

g∗k = gl∗n(C)⊕ b∗k
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where the projection is given by

b∗k
πirr
←−− g∗k

πRes
−−→ gl∗n(C)

where πirr and πRes are defined by taking irregular part and residue part respectively.

The Lie group Gk acts on g∗k by the coadjoint action g · A := gAg−1, consequently, the
coadjoint orbit O containing the element Ak/ζ

k + · · ·+A2/z
2 is a symplectic manifold. The

symplectic structure is given as follows:

Lemma 2.1 ( [Boa99]). (1) For any A ∈ O, the tangent space is

TAO = {[A,X] : X ∈ gk} ⊂ g∗k

(2) The symplectic structure is given by

ωA([A,X], [A, Y ]) = 〈A, [X,Y ]〉

Proof . For the first statement, for any X ∈ gk, the exponential map exp tX is an
element in Gk for t ∈ R, and γ(t) = (exp tX)A(exp tX)−1 defines a curve on O passing
through A whenever t = 0, hence an element of TAO can be expressed by

d

dt

∣∣∣∣
t=0

(exp tX)A(exp tX)−1 = [A,X]

Then the second statement follows directly form chapter 1. ■
Since GLn(C) is a subgroup of Gk, it also can act on O by coadjoint action, and this

action is obviously Hamiltonian with residue map as the moment map.

Lemma 2.2 ( [Boa99]). The Lie group action GLn(C)× O −→ O is a Hamiltonian action
with the moment map

µ : O −→ gl∗n(C)(
Ak

ζk
+ · · ·+ A1

ζ

)
dζ 7→ A1

ζ
dζ

Proof . Since the moment map of the action Gk × O −→ O is just inclusion, and dual
map of the inclusion GLn(C) ↪→ Gk is the residue map πRes : g∗k ↠ gl∗n(C), and since the
GLn(C) action is induced from the inclusion, the moment map is just the composition

µ : O ↪→ g∗k
πRes
−−↠ gl∗n(C) ■

So now, the symplectic quotient O//GLn(C) is a symplectic manifold.
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Theorem 2.1 ( [Boa99]). The moduli space M∗(A) of generic meromorphic connections
on P1 × Cn with formal form A = ( A1 0, ..., Am 0) near each pole ai is isomorphic to the
symplectic quotient:

M∗(A) ∼= O1 × ...×Om//GLn(C)

where Oi is the coadjoint orbit of Gki containing iA0.
Hence there exists an intrinsic symplectic structure on M(A).

Proof . The proof is simple. We choose a coordinate chart on P1 such that the coordi-
nate of each pole ai is a finite complex number which will still be denoted by ai, hence we
can write down the local expression of ∇ as

∇ = d−
m∑
i=1

(
iAki

(z − ai)ki
+ · · ·+

iA1

(z − ai)

)
dz

It contains no holomorphic part, since there are no other poles in the other coordinate chart
on P1.

A key observation is that if ∇ is formal equivalent to d− Ai 0, it must lies in the coadjoint
orbit of Gki containing Ai 0 ∈ g∗ki , however, the inverse is not true in general [BJL79], but it
is true for the generic case [BV83].

Moreover, since ∞ is not a pole, it requires

1A1 + · · ·+ Am
1 = 0

by Lemma 2.2, this is equivalent to say µ( A1 , ..., Am ) = 0, and different global trivialization
on left hand side implies the coadjoint action on the right hand side, hence by our discussion
above, the theorem is proved. ■

2.2 Extended Moduli Space

Again, we first take a glance at what have been moduled by the gauge transformation
group in the extended case. With the notation used above, d − A has irregular type A0

implies there exists a g(z) ∈ GLn(C[[z]]) such that the irregular part of gAg−1 + (dg)g−1 is
same as A0. Hence we have:

gAg−1 + (dg)g−1 =
(
g0 + · · ·+ gk−1z

k−1 + · · ·
)(Ak

zk
+ · · ·+ A1

z
+HP

)(
g−1
0 + · · ·

)
dz + ...

the irregular part of which is

πirr

(
g0

(
Ak

zk
+ · · ·+ A1

z

)
g−1
0 dz

)
= b

(
Ak

zk
+ · · ·+ A2

z2

)
b−1dz

29



for some b ∈ Bk, the right hand side lies in the coadjoint orbit of the subgroup Bk containing
(Ak/z

k + · · · + A2/z
2)dz ∈ b∗k, such an orbit will be denoted by OB. The analysis above

motivates us to define the extended orbits:

Definition 2.2 (Extended Coadjoint Orbit [Boa99]). The extended orbit Õ ⊂ GLn(C)× g∗k

associated to OB is

{
(g0, A) ∈ GLn(C)× g∗k : πirr(g0Ag

−1
0 ) ∈ OB

}
Note that we never defined a symplectic structure on Õ, so, next of our works will focus

on the symplectic structure on Õ.

Lemma 2.3 ( [Boa99]). Define the Bk action on T ∗Gk ×OB by

b · (g, A,B) 7→ (bg, A, bBb−1)

where (g, A) ∈ T ∗Gk
∼= Gk × g∗k, B ∈ OB. Then, this action is Hamiltonian and we have

T ∗Gk ×OB//Bk
∼= Õ

Hence Õ has is a symplectic manifold with the symplectic structure induced from the product
space.

proof. It is easily to check that the Bk action has the moment map:

µ : T ∗Gk ×OB −→ b∗k

(g, A,B) 7→ −πirr(Ad∗
g(A)) + B

Now, define the map

χ : µ−1(0) −→ Õ (g, A,B) 7→ (g(0), A)

it is obviously well-defined surjective and with Bk as fibres. ■

Lemma 2.4 ( [Boa99]). A tangent vector v ∈ T(g0,A)Õ ⊂ gln(C)× g∗k of Õ at (g0, A) has the
form

v =
(
g0X0, [A,X] + g−1

0 Λg0
)
∈ gln(C)× g∗k

where X = X0 +X1ζ + · · ·+Xk−1ζ
k−1 ∈ gk, Λ ∈ t∗ (technically, it is Λdζ/ζ).

proof . For (g, A,B) ∈ µ−1(0) ⊂ T ∗Gk ×OB = Gk × g∗k ×OB, from the proof of Lemma
2.3, we need to request

B = πirr
(
gAg−1

)
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and recall that

T(g,A,B)µ
−1(0) ∈ TgGk × g∗k × TBOB

∼= gk × g∗k × TBOB

now, from lemma 2.3, the map

χ : µ−1(0) −→ Õ (g, A,B) 7→ (g0, A)

is surjective, hence the tangent map

(dχ)(g,A,B) : T(g,A,B)µ
−1(0) −→ T(g0,A)Õ

is also surjective. Notice that, for X = X0 + X1ζ + · · · + Xk−1ζ
k−1 ∈ gk, and Λ ∈ t∗, the

curve defined by

γ(t) =
(
getX , e−tX

(
A+ tg−1

0 Λg0
)
etX , B

)
: I −→ µ−1(0)

is a curve in µ−1(0) passing through (g, A,B) whenever t = 0, indeed,

πirr
(
getXe−tX

(
A+ tg−1

0 Λg0
)
etXe−tXg

)
= πirr

(
gAg−1 + tgg−1

0 Λgog
−1
)

= πirr
(
gAg−1

)
= B

so, a tangent vector β ∈ T(g,A,B)µ
−1(0) can be expressed by

β =
d

dt

∣∣∣∣
t=0

γ(t) =
(
gX, [A,X] + g−1

0 Λg0, 0
)

hence any v ∈ T(g0,A)Õ can be expressed by

v := (dχ)(g,A,B)β =
d

dt

∣∣∣∣
t=0

χ ◦ γ(t)

=
d

dt

∣∣∣∣
t=0

(
g0e

tX0 , e−tX
(
A+ tg−1

0 Λg0
)
etX
)

=
(
g0X0, [A,X] + g−1

0 Λg0
)

as was to be shown. ■

Remark 2.2. If we use the tangent map of left multiplication

(dLg−1)
g
: TgGk −→ gk
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to identify TgGk with gk, then our tangent vector v ∈ T(g0,A)Õ can be identified by

v =
(
X0, [A,X] + g−1

0 Λg0
)
∈ gln(C)× g∗k

similarly, a tangent vector β ∈ T(g,A,B)µ
−1(0) then becomes to

β =
(
X, [A,X] + g−1

0 Λg0, 0
)
∈ gk × g∗k × TBOB

and we will use this expression in the later computation.

Lemma 2.5 ( [Boa99]). For v1, v2 ∈ T(g0,A)Õ, the symplectic form on Õ is given by

ω̃(g0,A)(v1, v2) =
〈
Λ1, g0X2g

−1
0

〉
−
〈
Λ2, g0X1g

−1
0

〉
+ 〈A, [X1, X2]〉

where vi =
(
Xi0 , [A,Xi] + g−1

0 Λig0
)

proof . Recall that for β1, β2 ∈ T(g,A,B)µ
−1(0) ⊂ gk × g∗k × TBOB, the symplectic form

on µ−1(0) ⊂ T ∗Gk ×OB is

ω(g,A,B)(β1, β2) = ω(g,A) (pr∗1β1, pr∗1β2) + ωB (pr∗2β1, pr∗2β2)

= ω(g,A)

((
X1, [A,X1] + g−1

0 Λ1g0
)
,
(
X2, [A,X2] + g−1

0 Λ2g0
))

=
〈
[A,X1] + g−1

0 Λ1g0, X2

〉
−
〈
[A,X2] + g−1

0 Λ2g0, X1

〉
− 〈A, [X1, X2]〉

=
〈
Λ1, g0X2g

−1
0

〉
−
〈
Λ2, g0X1g

−1
0

〉
− 〈A, [X1, X2]〉

where pri is the projection of T ∗Gk ×OB onto the first and second component with respect
to i = 1, 2 and pr∗i represents for their tangent map, and

βi =
(
Xi, [A,Xi] + g−1

0 Λig0, 0
)
, i = 1, 2

hence the induced symplectic form on Õ is

ω̃(g0,A)(v1, v2) = ω̃(g0,A)

(
(dχ)(g,A,B)v1, (dχ)(g,A,B)v2

)
= ω(g,A,B)(β1, β2)

=
〈
Λ1, g0X2g

−1
0

〉
−
〈
Λ2, g0X1g

−1
0

〉
− 〈A, [X1, X2]〉

as was to be shown. ■

We can see that an element (g0, A) ∈ Õ is determined by g0, the residue and the irregular
part of A, hence we have the following decoupling lemma:
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Lemma 2.6 (Decoupling [Boa99]). The following map is a symplectic isomorphism

ϕ : Õ −→ T ∗GLn(C)×OB

(g0, A) 7→
(
g0, πRes(A), πirr

(
g0Ag

−1
0

))
proof . The map

ψ : T ∗GLn(C)×OB −→ Õ

(g0, S, B) 7→
(
g0, g

−1
0 Bg0 + S

)
is the inverse of ϕ, and we can show it is symplectic by straightforward computation. ■

Lemma 2.7 ( [Boa99]). The Lie group action

GLn(C)× Õ −→ Õ

h · (g0, A) 7→
(
g0h

−1, hAh−1
)

is a free Hamiltonian action, the moment map is

µ : Õ −→ gl∗n(C)

(g0, A) 7→ −πRes (A)

proof . The induced GLn(C)−action on the decoupling T ∗GLn(C)×OB is

h · (g0, S, B) =
(
g0h

−1, hSh−1, B
)

now, we need to check whether GLn(C)−action on T ∗GLn(C) is Hamiltonian. For X ∈
gln(C), if we identify TgGLn(C) with gln(C) by the left multiplication, we can compute the
fundamental vector field

X(g, S) = (−X, [X,S]) ∈ gln(C)× gl∗n(C)

hence for any (Y,R) ∈ T(g,S)T ∗GLn(C) ∼= gln(C)× gl∗n(C), we can compute

(ιXω)(g,S) (Y,R) = 〈[X,S], Y 〉+ 〈R,X〉+ 〈S, [X,Y ]〉

= 〈R, X〉

next we claim
µ1 : T ∗GLn(C) −→ gl∗n(C) (g, S) 7→ −A

is the moment map, in fact, for any X ∈ gln(C), we can compute the tangent map of µ1
X
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straightforward by (
dµ1

X

)
(g,S)

(Y,R) = −〈R,X〉

hence it is a Hamiltonian action, thus we can compute the moment map by

µ(g0, A) = µ1 (πRes(A)) + 0 = −πRes (A)

as was to be shown ■

Now, using an analogue method from Theorem 2.1, we can prove:

Theorem 2.2 ( [Boa99]). The extended moduli space is isomorphic to :

M̃∗(A) ∼= Õ1 × · · · × Õm//GLn(C)
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3 Stokes Representations and Monodromy Manifolds
As we mentioned in section 1.2, there is an important family of invariants in Ŝyst(A0),

namely the Stokes factors (matrices). Meanwhile, the local theory of meromorphic connec-
tions is just the theory of linear ODEs, hence Stokes factors can help us to investigate the
moduli space of meromorphic connections as well.

In this chapter, we will introduce a more generalised notion of monodromy representa-
tions, which is called the Stokes Representation of a groupoid Γ̃, which is a slightly larger
notion than the fundamental group π1(P1 \ {a1, ..., am}).

We will define the moduli space of the Stokes representations

M̃(A) = HomSto

(
Γ̃;GLn(C)

)
/Gln(C)

and see the relation between which and M̃(A) defined in the last chapter by showing two
generic connections are equivalent precisely if they induce the same Stokes representations.
Then we shall give an explicit description of M̃(A)

3.1 Stokes Representations

First, as we did before, we fix the data A = { A1 0, ..., Am 0} of irregular types near each
pole ai on P1, and choose m disjoint open disks Di ⊂ P1 which containing ai for each i so
that the coordinate chart on Di vanishes at ai.

Now, choose a base point p0 ∈ P1 \ {a1, ..., am}, and a point biξ in each of the sectors
bounded by two anti-Stokes directions at each pole ai, where ξ ranges over some finite set
which indexing the Stokes sectors of each iA0.

The choice of biξ

Let Bi represents for the set of those biξ near each ai, and B̃i, the lifting of Bi into the
universal cover of Di \ {ai}, hence

B̃i ⊂ ˜Di \ {ai} ∼= R

35



If p̃ ∈ B̃i, the corresponding point in Bi will be denoted by p.

Definition 3.1 (The groupoid Γ̃). The groupoid Γ̃ is a category consists of following data:
(1). The objects Ob(Γ̃) is the set

B̃ = {p0}
m⋃
i=1

B̃i

(2). The morphisms between 2 objects p̃1, p̃2 are defined as the set of homotopy classes
of paths

γ : [0, 1] −→ P1 \ {a1, ..., am}

from p1 to p2.

We assume (E,∇, g) is a generic meromorphic connection with the compatible framing
g on a holomorphic vector bundle E, with prescribed poles on the divisor D =

∑
i kiai, and

with irregular types A near each pole ai.
We assume ∇ = d − Ai in some local trivialization of E on Di, hence it determines a

linear ODE dy = Ai y, it has a fundamental solution, denoted by Φi.
(E,∇, g) will induce a representation of the groupoid Γ̃ as follows.
Suppose [γp̃2p̃1 ] is a morphism in Γ̃, ∇ will induce a basis of ∇−horizental (∇s = 0)

sections of E restricted on some neighbourhood of pi, namely Φ : Cn −→ E, by extending
Φ1 analytically (as solutions of ∇) along the the path γp̃2p̃1 to p2, the result will be different
from Φ2 by a constant matrix Φ1 = Φ2 · C, hence it defines a representation:

ρ ([γp̃2p̃1 ]) := C = Φ−1
2 · Φ1 ∈ GLn(C)
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Clearly ρ only depends on the homotopy class of the path in P1 \ {a1, ..., am}, and it is
indeed a representation. It has the following properties:

Lemma 3.1 ( [Boa99]). (1). For any i, if p̃1 ∈ B̃i and p̃2 is the next element in B̃i in the
positive sense, assume γp̃2p̃1 is a small arc in Di from p1 to p2, then

ρ (γp̃2p̃1) ∈ Stod

(
Ai 0
)

where d is the unique anti-Stokes ray that γp̃2p̃1 crosses.
(2). For each i, there is a diagonal matrix iΛ (which has distinct eigenvalues mod Z

when ki = 1) such that for any p̃1 ∈ B̃i, p̃2 ∈ B̃ and γp̃2p̃1 , we have:

ρ
(
γp̃2(p̃1+2π)

)
= ρ (γp̃2p̃1) · e2π

√
−1· Λi

here ρ
(
γp̃2(p̃1+2π)

)
is the same path as γp̃2p̃1 , but p̃1 + 2π is the next point after p̃1 in the

universal cover B̃i.

proof. The 1st statement comes directly from Definition 1.9.
For (2), we assume ∇ = d− Ai in some local trivialization on Di, where

(dg) g−1 + g Ai g−1 = d
(
Qi
)
+

iΛ

z
dz

where g ∈ GLn(C[[z]]), and g(0) = gi is the compatible frame at the pole ai, d(iQ) is the
irregular part of iA0. Recall that two consecutive branches of log z will be differed by a
2π ·
√
−1, hence

ρ
(
γp̃2(p̃1+2π)

)
= ρ (γp̃2p̃1) · e2π

√
−1· Λi ■

Remark 3.1. Since the trace Tr( iΛ) is the residue of ∇ at the pole ai, by Lemma 1.1, we
need to impose that

m∑
i=1

Tr
(
Λi
)
= − degE

Next, we shall call a representation of Γ̃ with these 2 properties the Stokes represen-
tation

Definition 3.2 (Stokes Representation [Boa99]). A Stokes representation ρ is a represen-
tation of the groupoid Γ̃:

ρ : Γ̃ −→ GLn(C)

together with a choice of m diagonal matrices iΛ, such that (1) and (2) in Lemma 3.1 holds.
The matrices iΛ associated with the Stokes representation are called the exponents of
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formal monodromy, the number

deg(ρ) :=
m∑
i=1

Tr
(
Λi
)

is called the degree of the representation (by Remark 3.1, it is a integer number).

Remark 3.2. The connections are not needed in the definition of Stokes representation
appeared above, in fact, once we get a choice of nice formal form A near each pole ai

together with a choice of formal monodromy Λ, a Stokes representation ρ can be defined.
Hence to be simplified, we can use (ρ,A,Λ) to express for a Stokes representation.

The collection of all Stokes representations of Γ̃ is denoted by HomSto(Γ̃;GLn(C)).
Next, we will define a GLn(C) action on HomSto(Γ̃;GLn(C)).

Definition 3.3 ( [Boa99]). Suppose p̃1, p̃2 ∈ B̃ \ {p0}, g ∈ GLn(C), we define

(g · ρ) (γp0p0) = gρ (γp0p0) g
−1 (g · ρ) (γp0p̃1) = gρ (γp0p̃1)

(g · ρ) (γp̃2p0) = ρ (γp̃2p0) g
−1 (g · ρ) (γp̃2p̃1) = ρ (γp̃2p̃1) g

−1

If two Stokes representations are differed by a GLn(C) action, then we call these 2
representations are equivalent, the space of equivalent classes of Stokes representations will
be denoted by

M̃(A) = HomSto(Γ̃;GLn(C))
/

GLn(C)

The main theorem will be stated as follows:

Theorem 3.1 ( [Boa99]). Two generic connections (E1,∇1, g1), (E2,∇2, g2) (rankE1 =

rankE2 = n) with irregular type A are equivalent, if and only if they induce the equiv-
alent Stokes representations. In particular, we have an injection:

ν : M̃(A) −→ M̃(A)

this map ν is called the Riemann-Hilbert map

proof. The only if part comes directly from the construction of GLn(C) action. For the
if part, we denote

Φj(zi) : Cn −→ Ej

the canonical basis of solutions of ∇j on each sector at ai, hence the local isomorphism

Φ2 ◦
(
Φ1
)−1

: E1 −→ E2
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can be extended to the whole P1, this is a desired isomorphism between (E1,∇1, g1) and
(E2,∇2, g2). ■

Remark 3.3. The study of the surjectivity of the Riemann-Hilbert map ν, that is for
any Stokes representation (ρ,A,Λ), does there exist a connection (E,∇, g) on some vector
bundle E with the irregular type A such that the representation induced by which is precisely
ρ? This is the (generalised version of) Riemann-Hilbert correspondence. Later, we will see
this correspondence does hold in the case of degree zero vector bundle, that is if we denoted
by M̃0(A) the extended moduli space of meromorphic connections on degree 0 bundles, then
the Riemann-Hilbert map is an isomorphism:

ν0 : M̃0(A) −→ M̃0(A)

3.2 Explicit Monodromy Manifolds

In this part, we will give an explicit description of M̃(A). Before doing this, we shall
introduce the notion of the monodromy manifolds.

Suppose N1, ..., Nm are m manifolds, we have maps µi : Ni −→ G to some group G.
There is a GLn(C)-action on G such that each µi is GLn(C)−equivariant, define a map µ as
follows:

µ : N1 × · · ·Nm −→ G (n1, ..., nm) 7→ ρm(nm) · · · ρ1(n1)

µ is clearly GLn(C)-equivariant, we will write the quotient:

N1 × · · · ×Nm

//
GLn(C) := µ−1(1)/GLn(C)

A manifold with such a form will called the monodromy manifold, for example, the moduli
space M(A) and M̃(A) defined in the previous chapter are both monodromy manifolds.

Definition 3.4 ( [Boa99]). Let U± be the upper/lower triangulated subgroup of GLn(C), t,
the set of diagonal n× n matrices and ki is the order of the pole ai, we define the manifold

C̃i := GLn(C)× (U+ × U−)
ki−1 × t

A point of C̃i will be denoted by (Ci, S
i , Λi

′
), here

Si =
(
Si 1, ..., S

i
2ki−2

)
∈ (U+ × U−)

ki−1

The map µi : C̃i −→ GLn(C) is defined as follows:

µi

(
Ci, S

i , Λi
′
)
:= C−1

i

(
Si 1 · · · Si 2ki−2 · e2π

√
−1· Λi ′)

Ci
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The GLn(C) action on C̃i is given by

g ·
(
Ci, S

i , Λi
′
)
:=
(
Cig

−1, Si , Λi
′
)

hence it clearly makes µi equivariant, we define the extended monodromy manifold to be

M̃ := C̃1 × · · · × C̃m//GLn(C)

Lemma 3.2 ( [Boa99]). The extended monodromy manifold M̃ is indeed a complex manifold
with same dimension as M̃∗(A).

Our main goal in this section is to show that extended monodromy manifold M̃ isomor-
phic to the moduli space of Stokes representations M̃(A), the construction of this isomor-
phism will depend on a choice of Tentacles, we will see later that those iS come from the
Stokes matrices and iΛ′ from the exponents of the formal monodromy.

Definition 3.5 (A Choice of Tentacles [Boa99]). A choice of tentacles T is a choice of:
(1). A point pi in some sector at ai between two anti-Stokes rays.
(2). A lift p̃i of each pi to the level of universal cover of the punctured disk ˜Di \ {ai} ∼= R.
(3). A base point p0 ∈ P1 \ {a1, ..., am}.
(4). For each pi, a path

γi : [0, 1] −→ P1 \ {a1, ..., am}

travels from p0 to pi such that the loop based at p0

(
γ−1
m · βm · γm

)
· · ·
(
γ−1
1 · β1 · γ1

)
is contractible in the fundamental group π1(P1 \ {a1, ..., am}, p0), where βi is any loop in
Di \ {ai} based at pi winding ai once in a positive sense.

A choice of tentacles, which really looks likes a tentacle
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Theorem 3.2 ( [Boa99]). For each choice of tentacles T there is an explicit isomorphism

φ̃T : M̃(A) −→ M̃ := C̃1 × · · · × C̃m//GLn(C)

proof. For a given Stokes representation (ρ,A,Λ) ∈ HomSto(Γ̃;Gln(C)), we use ibξ ∈ Bi

represents for the choice of the point in the ξ−th Stokes sector iSectξ in Di \{ai} during the
construction of Γ̃, and without loss of generality, we assume the choice of the points pi in
the tentacles T were chose among one of those ibξ, and p0 coincides with the fundamental
point in Γ̃.

As we have mentioned in section 1.2, the point pi determines a labelling convention of
the anti-Stokes rays of iA0, and its corresponding point p̃i in the universal cover determines
a branch of log z, hence we can determine a permutation matrix Pi (cf. Lemma 1.2) which
can upper/lower-triangularise all Stokes factors in Stoidξ(

iA0).
We define:

Ci := P−1
i · ρ (γp̃ip0) = P−1

i · ρ (γi) ∈ GLn(C)

We shall use ri = | Ai | to represent for the number of anti-Stokes directions of iA0, and
recall that it is divisible by 2ki − 2, the division is denoted by `i = ri/2(ki − 1).

small arc

Next, let ixξ be the morphism between the points ĩb(ξ−1)ℓi and ĩbξℓi , which is a small arc
crossing a half-period from the sector iSect(ξ−1)ℓi to iSectξℓi , and define

iSξ := P−1
i · ρ

(
xi ξ

)
· Pi, ξ = 1, ..., 2ki − 2

and
Λi

′
:= P−1

i · Λi · Pi, ξ = 1, ..., 2ki − 2

hence a choice of tentacles T determines an element Ci :=
(
Ci, S

i , Λi
′) in each C̃i associated

to each Stokes representation (ρ,A,Λ), i.e a map:
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φT : HomSto

(
Γ̃;GLn(C)

)
−→ C̃1 × · · · × C̃m

By computing

µ (C1, ...,Cm) =
m∏
i=1

µi

(
Ci, S

i , Λi
′
)

=
m∏
i=1

ρ
(
γ−1
i · xi 1 · · · xi 2ki−2 · γi

)
:=

m∏
i=1

ρ
(
γ−1
i · βi · γi

)
= ρ

((
γ−1
m · βm · γm

)
· · ·
(
γ−1
1 · β1 · γ1

))
= I ∈ GLn(C)

hence the image of φT is exactly µ−1(1), by Theorem 3.1, it also injective, and since these
µi are clearly GLn(C)−equivariant, hence it can be descended to the quotient space:

φ̃T : M̃(A) −→ M̃ := C̃1 × · · · × C̃m//GLn(C)

■
In the rest part of this thesis, we will pay more attention on the case of trivial bundles,

hence we only need to consider the component of degree 0 part of the moduli space, that is
M̃0(A), we will give a symplectic structure on M̃0(A) but from a different approach, namely,
the C∞ approach.
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4 The C∞ Approach

4.1 The Flat Singular C∞ Connections

Let D = k1a1 + · · · kmam ∈ Div(P1), ki > 0, C∞ be the sheaf of smooth functions on
P1, and OD the sheaf of meromorphic functions with poles on D, and we define the sheaf of
smooth functions on P1 with poles on D to be

C∞D := OD ⊗O C∞

and analogously, we can define the sheaf of smooth r−forms with poles on D, namely Ωr
D.

Remark 4.1. Locally, if we choose a coordinate chart (Di, zi) containing ai with zi(ai) = 0,
a function f ∈ C∞D (Di) can be expressed by

f(zi) =
g

zkii

where g is a smooth function on Di.

Definition 4.1 (Laurent Map [Mal66]). We fix a family of coordinate charts Di near each
ai, such that the coordinate of ai is 0, the Laurent Map at each Di is defined by

Li : Ω
r
D

(
P1
)
−→ z−ki

i C[[zi, z̄i]]⊗
r∧
C2

the Laurent expansion of the local expression of ω ∈ Ωr
D on Di at the point ai.

For example, f ∈ C∞D has local expression f = g/zkii on Di, the Laurent map on f is:

Li(f) =
Li(g)

zkii

where Li(g) is the Taylor expansion of g at z = 0.

Remark 4.2. It is not hard to see the following facts of the Laurent map:
(1). If Li(ω) = 0 then ω is non-singular at ai.
(2). Li commutes with the exterior derivative and wedge product:

Li(ω1 ∧ ω2) = Li(ω1) ∧ Li(ω2)

dLi = Lid

Another important fact is that
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Lemma 4.1 (E.Borel). The Laurent map Li is surjective. More specifically, if M is a
differential manifold, I = [−c, c] ⊂ R, and f̂ ∈ C[[x, y]] ⊗ C∞(M), where (x, y) is the
coordinate on C, then there exists an f ∈ C∞(M × I2) such that the Taylor expansion of f
at x = y = 0 is f̂ .

Definition 4.2 (C∞ singular connections [Boa99]). A C∞ singular connection on a C∞

vector bundle E over P1 is a morphism between sheave:

∇ : E −→ E ⊗ Ω1
D

where E is the sheaf of C∞ sections of E, satisfying the Leibniz rule:

∇(f · s) = (df)⊗ s+ f · ∇s

where f is a smooth function.

Remark 4.3. Locally, if we choose a local trivialization of E near the singularity ai, ∇ has
the expression:

∇ = d− Ai

zkii

where iA is a matrix-valued C∞ 1-form.

In this chapter, we will mainly focus on the case that E is a trivial bundle, recall that
any degree 0 vector bundle E over P1 is C∞−trivial. Since trivial bundle admits a global C∞

trivialization, the connection matrix α of ∇ = d− α is in fact a singular 1-form defined on
the whole P1, hence the collection of all singular connection with poles on D can be denoted
by

AD :=
{
d− α : a ∈ Endn

(
Ω1

D

(
P1
))}

Moreover, the gauge transformation group of a trivial bundle is simply:

G = Aut
(
P1 × Cn

) ∼= GLn

(
C∞ (P1

))
for g ∈ G, the g action on a connection d− α ∈ AD is given by

g[α] = (dg)g−1 + gαg−1

Remark 4.4. It is important to check that the gauge transformation is associative, i.e. for
h, g ∈ G, one has

h[g[α]] = hg[α]

hence it does define a Lie group action.
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Definition 4.3 (Curvature [Huy05]). The curvature of a connection ∇ is Ω(∇) := ∇2:

Ω : E ∇−→ E ⊗ Ω1
D

∇−→ E ⊗ Ω1
D ⊗ Ω1

D = E ⊗ Ω2
2D

a connection is called flat if its curvature is zero.

Hence if we write ∇ = d− α, the curvature is

Ω = (d− α) ∧ (d− α) = −dα + α ∧ α

which is a singular 2-form, called the curvature form. It is no wonder that

Corollary 4.1. Every meromorphic connection is flat.

Another important fact is

Lemma 4.2. The gauge transformation of a flat connection is again flat.

proof . Suppose Ω(∇) = 0, for g ∈ G, notice that

Ω(g[∇]) = gΩ(∇)g−1 = 0 ■

Next, as we did in the case of meromorphic connections, we choose a family of nice
normal (formal) form A = ( A1 0, ..., Am 0) near each singularity ai, where iA0 are generic
diagonal matrices with only principal parts in Laurent expansion. In order to define a
connection with formal type A, we can do comparison between their Laurent expansions:

Definition 4.4 ( [Boa99]). The set of all singular connections with formal type A is

AD(A) :=
{
d− α : Li(α) =

iA0
}

similarly, the set of singular connections with irregular type A is

ÃD(A) :=

{
d− α : Li(α) =

iA0 +
(
Λi − Λi 0

) dzi
zi
, for some iΛ ∈ t

}
If we impose an extra condition, flat connections, on each of the spaces in the above

definition, then the corresponding space will be denoted by Afl(A) and Ãfl(A) respectively.

Definition 4.5. GT ,G1 are the subgroups of G, consisting of all elements which have Taylor
expansion equal to constant diagonal matrices and identity I respectively.

4.2 The C∞ Linear Ordinary Differential Equations

Now, we will give a C∞ description of the space H (A0) defined in section 1.2.
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Let D be a unit disk in C containing z = 0, and fix a diagonal meromorphic connection
germ d − A0 with an order k pole at z = 0. Recall that in this case, our G is actually
GLn (C

∞(D)), G1 and GT are of same meaning as before.

Lemma 4.3 ( [Boa99]). The projection (A, F̂ ) 7→ F̂ defines an injection between Ŝyst (A0) ↪→
G[[z]].

So it allows us to identify Ŝyst (A0) with a subset of G[[z]].

Definition 4.6 ( [Boa99]). We define:

F
(
A0
)
:= L−1

0

(
Ŝyst

(
A0
))

Where L0 : G −→ GLn(C[z, z̄]) is the map of Laurent expansion at z = 0.

Remark 4.5. For g ∈ F (A0) ⊂ G implies:
(1). L0(g) ∈ GLn(C[[z]]), i.e no z̄−parts in its Taylor expansion, and
(2). L0(g) [A

0] is convergent to some matrix-valued meromorphic 1-form A.

Lemma 4.4 ( [Boa99]). The Taylor expansion at 0 induces isomorphisms

(
F
(
A0
) /
G1
)/
G{z} ∼= H

(
A0
)

proof . Notice that the map

F
(
A0
) /
G1 −→ Ŝyst

(
A0
)

[g] 7→
(
L0(g)

[
A0
]
, L0(g)

)
defines a bijection (by Remark 4.2). ■

Theorem 4.1 ( [BJL79]). We have isomorphism

F
(
A0
)/
G{z} ∼= Afl

(
A0
)

Hence combining with Lemma 4.4, we have isomorphism

H
(
A0
) ∼= Afl

(
A0
)/
G1

proof . Define a map σ by:

σ : F
(
A0
)/
G{z} −→ Afl

(
A0
)

[g] 7→ g−1
[
L0(g)

[
A0
]]
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First,we claim this map is well-defined. Indeed, the Laurent expansion of σ(g) is

L0(σ(g)) = L0(g)
−1L0(g)

[
A0
]
= A0

by Lemma 4.2, σ(g) is also flat, hence σ(g) ∈ Afl (A
0).

Next, for [g] = [g′], which implies there exists an h ∈ G{z} such that g′ = hg, notice
that L0(h)[A] = h[A], hence

σ(hg) = g−1h−1
[
hL0(g)

[
A0
]]

= σ(g)

so it is well-defined.
σ is also surjective. To see this, for A ∈ Afl (A

0), its (0, 1)−part is non-singular, hence
there exists an g ∈ G such that (∂̄g)g−1 = A(0,1). Observe that g−1[A] is also flat and has no
(0, 1)−part, in fact, the (0, 1)−part of g−1[A] is

(
∂̄g−1

)
g + g−1A(0,1)g = −g−1

(
∂̄g
)
g−1g + g−1(∂̄g)g−1g

= −g−1∂̄g + g−1∂̄g = 0

hence we can write g−1[A] = Fdz/zk. Next we will show L0(g)g
−1[A] = A0, first observe

that L0(g) has no z̄−terms, in fact

∂̄L0(g) = L0(∂̄g) = L0

(
A(0,1)g

)
= 0

hence
L0

(
g−1
) [
A0
]
= L0

(
g−1
)
[L0(A)]

= L0

(
g−1[A]

)
= g−1[A]

Moreover, it also implies g ∈ F (A0). Finally, it follows from Lemma 4.3 that σ is injective.
■

The last thing is to define the Stokes matrices from Ãfl(A) side.
For A ∈ Ãfl(A), from theorem 4.1, there exists an g ∈ F (A0) ⊂ G (with (∂̄g)g−1 =

A(0,1)) such that
gL0

(
g−1
) [
A0
]
= A

we assume
A0 = dQ+

Λ0

z
dz

hence on each Stokes sector Secti, the fundamental solution of dy = Ay can be formulated
by

Φi = gΣi

(
L0

(
g−1
))
zΛ

0

eQ

hence then, the notion of Stokes factors can be defined as usual as Definition 1.9.
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4.3 Globalization

As the local picture was shown in section 4.2, in this section we will turn to the case on
the whole P1.

Recall that A = ( A1 0, ..., Am 0) are the fixed data of irregular type near each pole ai,
and we use M̃0(A) represents for the extended moduli space of meromorphic connections
(E,∇, g) with irregular type A on the degree 0 bundles.

Theorem 4.2 ( [Boa99]). We have the isomorphism

M̃0(A) ∼= Ãfl(A)
/
G1

proof . The isomorphism

σ̃ : M̃0(A)
∼=−→ Ãfl(A)

/
G1

can be constructed in the following way. For [∇] ∈ M̃0(A), since degE = 0, and as
was shown in the local picture, we can choose a C∞−global trivialization of E, namely
g∇ : E −→ P1 × Cn, such that:

(1). g∇(ai) = ig0 for each ai.
(2). If we assume ∇ = d − α∇

g under this global trivialization, the Laurent expansion
at ai is

Li

(
α∇
g

)
= iA0

hence we obtain a map
σ : M̃0(A,g) −→ Ãfl(A)

[∇] 7→ d− α∇
g

it is straightforward to check this σ is well-defined, surjective, and precisely has G1−orbit as
fibre, hence we can descend it to the quotient level, i.e σ̃, which is a desired isomorphism. ■

Remark 4.6. If we restrict this σ̃ to the submanifold of trivial bundle, i.e M̃∗(A), then that
global trivialization g∇ can be viewed as a bundle automorphism, i.e g∇ ∈ GLn (C

∞ (P1)).

As what we did in chapter 3, for any d− α ∈ Ãfl(A), it determines a Stokes represen-
tation:

ν : Ãfl(A) −→ M̃0(A)

we call this ν, the monodromy map.

Theorem 4.3 (Riemann-Hilbert Correspondence [Boa99]). The monodromy map ν is sur-
jective and precisely has the G1−orbit as fibre.
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Hence it induces the bijection

M̃0(A) ∼= Ãfl(A)
/
G1 ∼= M̃0(A)

proof . We use Γ̃ to express for the groupoid determined by A, choose a tentacle T ,
and thickening each γi by

γ̄i : [0, 1]× [0, 1] −→ P1 \ {a1, ..., am}

we denote |γ̄i| the ribbon formed by those γ̄i. Let D0 be the disk containing p0 disjoint with
each disk Di containing ai, define the region:

|T | := D̄0 ∪
m⋃
i=1

(
D̄i ∪ |γ̄i|

)
⊂ P1

Without loss of generality, we may assume that:
(1). For each i 6= j, the intersection of two ribbons

|γ̄i| ∩ |γ̄j| ⊂ D̄0

(2). |T | homeomorphic to a closed disk.
First, we will prove the monodromy map ν is surjective. From Theorem 3.2, every

degree 0 Stokes representation determines a group of data (C,S,Λ′) in the monodromy
manifold, by theorem 4.1 and lemma 1.5, near each ai there exists an αi ∈ iÃfl (

iA0) with
the data of C̃i−component of (C,S,Λ′), it is straightforward to extend αi arbitrarily to D̄i.
these αi can be patched along the ribbons in the following way. Let iΦ0 be the canonical

the patching of αi

fundamental solution of αi on the sector containing pi, namely iSect0. Since GLn(C) is path
connected, we can choose a smooth map

χi : |γ̄i| −→ GLn(C)
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such that χi = 1 on |γ̄i| ∩ D̄0 and χi =
iΦ0PiCi on |γ̄i| ∩ iSect0, hence we can define α on

|T | by

α|T =


αi on D̄i

0 on D̄0

(dχi)χ
−1
i on |γ̄i|

It is straightforward to check this definition agrees on the overlaps. Now, we must extend
α to the whole P1. The condition ρm · · · ρ1 = 1 guarantees that α has trivial monodromy
around the boundary circle ∂|T |, hence the local fundamental solution Ψ of α extends to a
loop in GLn(C)

Ψ : ∂|T | −→ GLn(C)

Then deg ρ = 0 implies this loop Ψ is contractible in Gln(C). In fact, recall that the
determinant map det : GLn(C) −→ C∗ makes GLn(C) an SLn(C)−bundle over C∗ ∼= S1,
and SLn(C) is simply connected, from the homotopy long exact sequence for fibrations, the
determinant induces an isomorphism between fundamental groups

π1 (GLn(C)) ∼= π1
(
S1
) ∼= Z

hence we need to show the induced loop

detΨ : ∂|T | −→ C∗ ∼= S1

has winding number zero around z = 0. The winding number of detΨ is

1

2π
√
−1

∫
∂|T |

d detΨ
detΨ =

1

2π
√
−1

∫
∂|T |

Tr(α) = deg ρ = 0

thus the loop Ψ can be extended to a smooth map from the complement of |T | to GLn(C).
We can define α = (dΨ)Ψ−1 on this complement and thereby obtain α ∈ Ãfl(A), the
surjectiveness hence now be proven.

As for the monodromy map ν has precisely G1 as fibre, it is an analogue proof of Theorem
3.1. ■

4.4 Symplectic Structure

In this section, we will give a symplectic structure on ÃD(A), it is an analogue of
Atiyah-Bott’s frame work [AB83] on the case of non-singular connections, then by showing
the curvature map is the moment map of G1−gauge action, hence the moduli space of flat

50



C∞ singular connection is just the symplectic quotient

Ã(A)
/
G1 = ÃD(A)

//
G1

hence a symplectic manifold. Then by taking monodromy map, M̃0(A) will inherit a sym-
plectic structure as well.

4.4.1 The Atiyah-Bott Symplectic Form on ÃD(A)

Lemma 4.5 ( [Boa99]). The space ÃD(A) is a Fréchet manifold, and for every α ∈ ÃD(A),
the tangent space at α is:

TαÃD(A) =

{
φ ∈ Ω1

D

(
P1
)
⊗ End(E)

∣∣Li(φ) ∈ t
dzi
zi

}
:= W

proof . For the last assertion only. Choose φ ∈ W , observe that the path

γ(t) = α + tφ : I −→ ÃD(A)

indeed defines a path in ÃD(A) with γ(0) = α, hence differentiate at t = 0, the tangent
space is W . ■

Lemma 4.6 ( [Boa99]). For φ, ψ ∈ W = TαÃD(A), the formula

ωα(φ, ψ) :=
1

2π ·
√
−1

∫
P1

Tr(φ ∧ ψ)

defines a symplectic structure on the Fréchet manifold ÃD(A).

proof . Since Li(φ∧ψ) is a (2, 0)−form on P1 hence it is zero, by Remark 4.2 (1), φ∧ψ
is non-singular, thus this integral is well-defined. Notice that the integration is independent
of the choice of α, hence ωα is constant, in particular, it is continuous and closed: dω = 0.

To see it is non-degenerate, if ωα(φ, ψ) = 0 for all ψ, we assume φ 6= 0, it must not
vanish at some p 6= a1, .., am, hence we can construct a ψ vanishing outside a neighborhood
of p such that ωα(φ, ψ) 6= 0, a desired contradiction. ■

4.4.2 The Fréchet Lie Group G Action is Hamiltonian

The gauge group

G = GLn

(
C∞ (P1

))
= C∞ (P1;GLn(C)

)
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is a Fréchet Lie group, i.e. it is group with a structure of a smooth Fréchet manifold such
that the group operation and inverse are C∞. Its Lie algebra, denoted by Lie(G), is

Lie(G) = Endn

(
C∞ (P1

))
= C∞ (P1; gln(C)

)
= Γ(EndE)

where Γ(EndE) means the global section of the endomorphism bundle EndE.
For X ∈ Lie(G), the exponential map is then the usual exponential of matrices:

exp : Lie(G) −→ G

X 7→ expX = eX

the exponential is also a local chart of a neighborhood of the identity, and it can be extended
to a complex structure such that G is a complex Lie group.

Later, we will concentrate more on the subgroup G1 and GT , and it is no wonder that

Lie(G1) = {X ∈ Lie(G) : Li(X) = 0}

Lie(GT ) = {X ∈ Lie(G) : Li(X) ∈ t}

Remark 4.7. (1). For a connection ∇ = d − α ∈ ÃD(A), the induced connection ∇̃ is as
follows: (

∇̃X
)
u = [∇, X] := ∇(Xu)−X∇u

where X is a section of the endomorphism bundle EndE, u is the section of E. To agree
with the notation in [Boa99], we denoted by dα the induced connection of ∇, i.e:

dα : Ω0
(
P1;EndE

)
−→ Ω1

D

(
P1;EndE

)
(2). dα naturally induces a connection on the bundle End(E)⊗ Ω1

D, which will also be
denoted by dα

dα : Ω1
D

(
P1;EndE

)
−→ Ω2

2D

(
P1;EndE

)
φ 7→ dφ+ [φ, α]

Note that the image of this dα is actually non-singular, since we can take the Laurent
expansion of [φ, α], which is (2, 0)−form on P1 hence zero.

Now, we can compute the fundamental vector field of X ∈ Lie(G):

Lemma 4.7 ( [Boa99]). The Lie group G acts holomorphically on ÃD(A), and for α ∈
ÃD(A), and X ∈ Lie(G), the fundamental vector field of X associated to the gauge trans-
formation is

X(α) = −dαX
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proof . By definition we have:

X(α) =
d

dt

∣∣∣∣
t=0

{
(d exp tX)(exp tX)−1 + (exp tX)α(exp tX)−1

}
=

d

dt

∣∣∣∣
t=0

{(
detX

)
e−tX + etXαe−tX

}
=

d

dt

∣∣∣∣
t=0

{
etXt(dX)e−tX + etXαe−tX

}
= dX + [X,α] = −dαX ■

Lemma 4.8 ( [Boa99]). The G action on ÃD(A) preserves the symplectic structure.

proof . Any g ∈ G will determine a differmorphism of ÃD(A), we can compute its
tangent map:

(dg)α : TαÃD(A) −→ Tg[α]ÃD(A)

φ 7→ gφg−1

In fact
(dg)αφ =

d

dt

∣∣∣∣
t=0

g[α + tφ] = gφg−1

hence
ωα ((dg)αφ, (dg)αψ) =

1

2π
√
−1

∫
P1

Tr
(
gφg−1 ∧ gψg−1

)
=

1

2π
√
−1

∫
P1

Tr (φ ∧ ψ) = ωα(φ, ψ) ■

Next, we will show this G-action is Hamiltonian with curvature map as the moment
map.

Lemma 4.9 ( [Boa99]). The curvature map

Ω : ÃD(A) −→ Ω2
2D

(
P1;EndE

)
d− α 7→ Ω(α) := −dα + α ∧ α

is holomorphic, and its tangent map at α ∈ ÃD(A) is

(dΩ)α : TαÃD(A) −→ Ω2
(
P1;EndE

)
φ 7→ −dαφ

proof . For the second assertion only. By definition:

(dΩ)αφ =
d

dt

∣∣∣∣
t=0

Ω(α + tφ) = −dαφ ■
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Next, for any X ∈ Lie(G), and Ω(α) ∈ Ω2 (P1;EndE) we can define a paring:

〈Ω(α), X〉 := 1

2π
√
−1

∫
P1

Tr(Ω(α)X)

Theorem 4.4 ( [Boa99]). The paring defines the moment map of G1−action:

µ : ÃD(A) −→ Lie(G1)∗

hence the G1−action is Hamiltonian, the symplectic quotient is

µ−1(0)/G1 = Ãfl(A)
/
G1

proof . For X ∈ Lie(G), we denote

µX(α) :=
1

2π
√
−1

∫
P1

Tr(Ω(α)X) : ÃD(A) −→ C

we can compute its tangent map (dµX)α : W −→ C by chain rule:

(dµX)αφ =
d

dt

∣∣∣∣
t=0

µX(α + tφ)

=
d

dt

∣∣∣∣
t=0

1

2π
√
−1

∫
P1

Tr(Ω(α + tφ)X)

=
1

2π
√
−1

∫
P1

Tr ((dΩ)αφX)

= − 1

2π
√
−1

∫
P1

Tr ((dαφ)X)

Notice that, since X ∈ Lie(G1), Li(X) = 0, hence Tr(φX) is non-singular, thus we have

dTr(φX) = Tr((dαφ)X)− Tr(φ ∧ dαX)

applying Stokes formula, we have

(dµX)αφ = − 1

2π
√
−1

(∫
P1

dTr(φX) +

∫
P1

Tr(φ ∧ dαX)

)
= − 1

2π
√
−1

∫
P1

Tr(φ ∧ dαX)

= ωα(X,φ) = −(ιXω)αφ

hence µ is indeed a moment map, and the G1−action is Hamiltonian. ■

Remark 4.8. The larger subgroup GT−action is also Hamiltonian, but the moment map
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need to be modified by:
µ : ÃD(A) −→ Lie(GT )∗

where
〈µ(α), X〉 := −

m∑
i=1

ResaiLi(αX) +
1

2π
√
−1

∫
P1

Tr(Ω(α)X)
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5 The Riemann-Hilbert Map is Symplectic
Now, our story can be illustrated in the following diagram:

M̃0(A) Ãfl(A)/G1

Õ1 × · · · × Õm//GLn(C) M̃∗(A) M̃0(A)

σ̃,∼=

ṽ,∼=

ℓ̃,∼=

i

ν̃

where i is the inclusion, ν̃ is the Riemann-Hilbert map defined in Theorem 3.1 and it is injec-
tive (by taking Stokes representation induced by a connection ∇). ṽ is the monodromy map
defined in Theorem 4.3, and by the Riemann-Hilbert correspondence, it is an isomorphism,
σ̃ is an isomorphism defined in Theorem 4.2, and ˜̀ appeared in Theorem 2.2.

M̃∗(A) has the inherited symplectic structure via ˜̀, M̃0(A) has the inherited symplec-
tic structure from Ãfl(A)

/
G1, and the symplectic structure in the later moduli space was

inherited from the Atiyah-Bott symplectic form on ÃD(A), in this chapter, we will show the
Riemann-Hilbert map is symplectic, it is equivalent to show:

Theorem 5.1 ( [Boa99]). The map σ̂ = σ ◦ i:

σ̂ : M̃∗(A) −→ Ã(A)

is symplectic, where σ : M̃0(A) −→ Ã(A) was defined in theorem 4.2.
So, the Riemann-Hilbert map:

ν̃ : M̃∗(A) −→ M̃0(A)

is symplectic.

proof . Without the loss of generality, we can assume there is just one pole, i.e D = k ·a,
and the nice formal form near a is A0, the compatible framing at a is g0, choose a semi-
sphere U which containing a on P1 such that the coordinate of a is 0, and we can write every
connection ∇ under this coordinate chart by

∇ = d− A = d−
(
Ak

zk
+ · · · A1

z

)
it has no holomorphic parts, since it has no poles on the other semi-sphere, and ∇ is in some
equivalent class in M̃∗ if and only if A1 = 0.

By the construction in Theorem 4.1:

σ̂(A) = gA[A]
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where gA ∈ GLn (C
∞ (P1)) satisfying

a). gA(a) = g0

b). The Taylor expansion of gA[A] at a is A0:

La(gA[A]) = A0

According to Lemma 2.4, a tangent vector W in T∇M̃∗ can be write as

W = [A,X] + g−1
0 Λg0 := [A,X] + Λ̃

where A is the connection matrix of ∇ using the coordinate chart on U , X ∈ gk with the
expression:

X = X0 +X1z + · · ·+Xk−1z
k−1

and Λ is actually Λdz/z ∈ t∗, notice that W is in fact a matrix-valued meromorphic
(1, 0)−form on P1.

We know from the proof of Lemma 2.4, a parameterized curve γ(t) in M̃∗ with γ(0) = ∇,
γ′(0) = W can be formulated by

γ(t) = e−tX
(
A+ tΛ̃

)
etX := At

hence by Remark 4.6:
σ̂ ◦ γ(t) = gAt [At]

where gAt is a family of gauge transformations agree with the family of connections At, which
can be expressed by

gAt = gAe
tX̃

where X̃ ∈ End (C∞ (P1)), it must satisfy:
a’). X̃(0) = X0

b’). La

(
gAe

tX̃ [At]
)
= A0 for every t.

Notice that these two restrains on X̃ are just local conditions, hence we can choose one
such that X̃ only supports on a closed disk D̄ containing a, and the Taylor expansion of X̃
at a is precisely X

La

(
X̃
)
= X = X0 + · · ·+Xk−1z

k−1
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Let’s compute the tangent map dσ̂:

(dσ̂)∇W := φ =
∂

∂t

∣∣∣∣
t=0

{
gAe

tX̃ [At]
}

=
∂

∂t

∣∣∣∣
t=0

{(
dgAe

tX̃
)
e−tX̃g−1

A + gAe
tX̃Ate

−tX̃g−1
A

}
=

∂

∂t

∣∣∣∣
t=0

{
(dgA)g

−1
A + gAe

tX̃
(
t
(
dX̃
)
+ At

)
e−tX̃g−1

A

}
= gA

(
dX̃ +

[
X̃, A

]
+W

)
g−1
A

Now, for W1,W2 ∈ T∇M̃∗, where

Wj = [A,Xj] + Λ̃j j = 1, 2

by Lemma 2.5, we have

ωM̃∗(W1,W2) =
〈
Λ̃1, X2

〉
−
〈
Λ̃2, X1

〉
+ 〈A, [X1, X2]〉

Then, by Lemma 4.6:

ωÃ (φ1, φ2) =
1

2π
√
−1

∫
P1

Tr
((
dX̃1 +

[
X̃1, A

]
+W1

)
∧
(
dX̃1 +

[
X̃2, A

]
+W2

))
Notice that W1∧W2, W1∧

[
X̃2, A

]
and

[
X̃1, A

]
∧W2 are (0, 2)−form on P1 hence zero, thus

we have

ωÃ (φ1, φ2) =
1

2π
√
−1

∫
P1

Tr
(
dX̃1 ∧ dX̃2

)
+ Tr

(
dX̃1 ∧W2 +W1 ∧ dX̃2

)
+ Tr

([
X̃1, A

]
∧ dX̃2

)
+ Tr

(
dX̃1 ∧

[
X̃1, A

])
by the Poincaré lemma:

dTr
(
X̃1dX̃2

)
= Tr

(
dX̃1 ∧ dX̃2

)
and X̃1dX̃2 is non-singular, by Stokes formula:∫

P1

Tr
(
dX̃1 ∧ dX̃2

)
=

∫
P1

dTr
(
X̃1dX̃2

)
= 0

and since X̃j was chose only supported on D̄, hence we have

ωÃ (φ1, φ2) =
1

2π
√
−1

∫
D̄
Tr
(
dX̃1 ∧W2 +W1 ∧ dX̃2

)
+ Tr

([
X̃1, A

]
∧ dX̃2

)
+ Tr

(
dX̃1 ∧

[
X̃2, A

])
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Next, observe that

Tr
([
X̃1, A

]
∧ dX̃2

)
= dTr

([
X̃1, A

]
X̃2

)
− Tr

((
d
[
X̃1, A

])
· X̃2

)
and [

X̃1, A
]
∧ X̃2 =

[
X̃1, A

]
· ∂X̃2

∂z̄
dz ∧ dz̄

(
d
[
X̃1, A

])
X̃2 = −

[
∂X̃1

∂z̄
, A

]
· X̃2dz ∧ dz̄

hence
I :=

∫
D̄

Tr
([
X̃1, A

]
∧ dX̃2

)
=

∫
D̄

Tr
([
X̃1, A

]
· ∂X̃2

∂z̄

)
dz ∧ dz̄

=

∫
D̄
dTr

([
X̃1, A

]
X̃2

)
−
∫
D̄

Tr
((
d
[
X̃1, A

])
· X̃2

)
=

∫
∂D̄

Tr
([
X̃1, A

]
X̃2

)
+

∫
D̄

Tr
([

∂X̃1

∂z̄
, A

]
· X̃2

)
dz ∧ dz̄

recall that by Remark 2.1 item (3), the paring is given by

〈A, X̃j〉 := Resa
(

Tr
(
AX̃j

))
= Resa

(
Tr
(
A · La

(
X̃j

)))
= Resa (Tr (A ·Xj))

thus by residue theorem we have∫
∂D̄

Tr
([
X̃1, A

]
X̃2

)
= 2π

√
−1 · Resa

(
Tr([X̃1, A] · X̃2)

)
= 2π

√
−1 · Resa(Tr([X1, A] ·X2))

= 2π
√
−1 · 〈A, [X1, X2]〉

to compute the second part of I, we again use the integration by parts:

∫
D̄

Tr
([

∂X̃1

∂z̄
, A

]
· X̃2

)
dz ∧ dz̄ =

∫
D̄

∂

∂z̄
Tr
([
X̃1, A

]
· X̃2

)
dz ∧ dz̄ − I

= −I

where the last step comes from the enhanced Cauchy formula [GH14]:∫
D

∂f

∂z̄

dz ∧ dz̄
(z − a)k

=
2π
√
−1

(k − 1)!
· ∂

k−1f

∂zk−1
(a)−

∫
∂D

f(z)dz

(z − a)k
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hence
I =

1

2
〈A, [X1, X2]〉

so now, our symplectic form becomes to

ωÃ (φ1, φ2) =
1

2π
√
−1

∫
D̄

Tr
(
dX̃1 ∧W2 +W1 ∧ dX̃2

)
+ 〈A, [X1, X2]〉

=
1

2π
√
−1

∫
D̄

Tr
(
dX̃1 ∧ [A,X2]

)
+ Tr([A,X1] ∧ dX̃2)

+
1

2π
√
−1

∫
D̄

Tr
(
dX̃1 ∧ Λ̃2 + Λ̃1 ∧ dX̃2

)
+ 〈A, [X1, X2]〉

notice that ∂Xj/∂z̄ = 0, hence we can use a similar method to compute

J :=

∫
D̄

Tr
(
dX̃1 ∧ [A,X2]

)
=

∫
D̄

Tr
(
∂X̃1

∂z̄
· [X2, A]

)
dz ∧ dz̄

=

∫
D̄

∂

∂z̄
Tr
(
X̃1 · [X2, A]

)
dz ∧ dz̄

=

∫
D̄
dTr

(
X̃1 · [X2, A]

)
=

∫
∂D̄

Tr
(
X̃1 · [X2, A]

)
= 2π

√
−1 · Resa(Tr(X1 · [X2, A])) = −2π

√
−1 · 〈A, [X1, X2]〉

so now, our last mission is to compute

ωÃ(φ1, φ2) = −〈A, [X1, X2]〉+
1

2π
√
−1

∫
D̄

Tr
(
dX̃1 ∧ Λ̃2 + Λ̃1 ∧ dX̃2

)
since Λj are (1, 0)−forms, again, applying Poicaré lemma and integration by parts, we obtain:∫

D̄
Tr
(
Λ̃1 ∧ dX̃2

)
=

∫
D̄
dTr

(
Λ̃1 · X̃2

)
=

∫
∂D̄

Tr
(
X̃2 · Λ̃1

)
= ResaTr

(
X2Λ̃1

)
=
〈
Λ̃1, X2

〉
to sum up, we have:

ωÃ ((dσ̂)∇W1, (dσ̂)∇W2) = ωM̃∗(W1,W2)

hence σ̂ is symplectic, as was to be shown. ■
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6 Further Prospects

6.1 The Symplectic Geometry of Isomonodromic Deformation Equa-
tions

6.1.1 The Riemann Isomonodromy Problem

The general isomonodromic deformation equations, introduced by Jimbo, Miwa and
Ueno [JUM80], was originated from the Schlesinger euqations [Sch12].

Let’s consider a Fuchsian system on P1 = C ∪ {∞}:

dy = Ay

A is a matrix of meromorphic 1-forms with only simple poles a1, ..., am. If we assume ∞ is
not a pole of A, then we can write A as

A =
n∑

i=1

Ai

z − ai

where Ai ∈ gl∗n(C). It induces a monodromy representation of the fundamental group:

ρ : π1
(
P1 \ {a1, ..., am}

)
−→ GLn(C)

now, the isomonodromic deformation problem is, if we assume the poles a1, ..., am are varying
smoothly on C, what conditions shall those Ai have such that they induce the same mon-
odromy representation? In other words, there are many different Fuchsian systems with the
same monodromy behavior, how to determine all such systems? Schlesinger in his 1912 pa-
per [Sch12] claimed that all such systems are governed by the equations which are nowadays
called the Schlesinger equations:

∂Ai

∂aj
=

[Ai,Aj ]

ai−aj
i 6= j

∂Ai

∂ai
= −

∑
j ̸=i

[Ai,Aj ]

ai−aj
i = j

Now, if the equation is no more Fuchsian, i.e, the orders of the poles are greater than 2,
the “monodromy” data will be more complicated, the Stokes matrices should be involved.

Let’s consider an (irregular) equation with poles at a1, ..., am, the order of each pole ai
is ni, and has no further pole at ∞, we can write such an equation as

dy = Ay =
m∑
i=1

(
iAni

(z − ai)ni
+ · · ·+

iA1

(z − ai)

)
y

We need to request first that this equation is generic, i.e, the matrices iAni
are diago-
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nalisable and with distinct eigenvalues, and second, this equation is formal equivalent to a
diagonal system, that is to say there exists a formal gauge transformation F̂i ∈ GLn(C[[z]])
for each pole ai such that

F̂i

[
iA0
]
= iA

where iA0 is a diagonal matrix. Thus this will determine a group of Stokes matrices
( 1S, ..., mS) near each pole ai, where

iS =
(
iS1, ...,

iSri

)
is the Stokes matrices at the pole ai, ri is cardinality of the anti-Stokes directions at ai.

Now, let a1, .., am vary smoothly on C, the isomonodromic deformation problem aims
to find all irregular systems with the following “monodromy data” being fixed:

a). the number and the order of the poles;
b). the properties of being generic and formal diagonalisable;
c). the monodromy representation of the fundamental group (the exponents of formal

monodromy);
d). the Stokes matrices near each pole.
Let Xk(a) be the set of all irregular types at a ∈ P1 of order k, i.e

Xk(a) =

{
dQ = A0

k

dz

zk
+ · · ·+ A0

2

dz

z2

∣∣∣∣A0
i ∈ t

}
The data that is deforming now is:
i). The position of the poles a1, ..., am ∈ P1;
ii). The irregular types (the residue parts are fixed by c), since they are the exponents

of formal monodromy):
A =

(
1A0, ..., mA0

)
We can define the manifold of the deformation data:

Definition 6.1 ( [Boa99]). The Jimbo-Miwa-Ueno deformation manifold is defined by

X =
{
(a,A) := t|a = (a1, ..., am) ∈ P1,A =

(
1A0, ..., mA0

)
, iA0 ∈ Xki(ai)

}
Define a 1-form on X by:

Ω :=
m∑
i=1

(
A(z, t)dai − F̂i(z, t)D

(
iA0

1 + · · ·+ iA0
ni

)
F̂−1
i (z, t)

)
where D is the exterior differential with respect to the components of iA0

k only, and we use
A(z, t), F̂ (z, t) to indicate that they are depending on the deformation parameter t.

Jimbo, Miwa and Ueno’s answer to the isomonodromic problem in the general case is:
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Theorem 6.1 ( [JUM80]). The linear ODEs with the monodromy data a),b),c) and d) fixed
are determined by the following equation:

dA+ [Ω, A] +
dΩ

dz
= 0

This equation is called the Jimbo-Miwa-Ueno isomonodromic deformation equation, it
is a non-linear differential equation satisfying the Painlevé property [Con12].

6.1.2 Isomonodromic Connection

Now, back to our moduli space M̃∗(A), we can associate a fibre M̃∗(A) at each point
t = (a,A) ∈ X, hence we can define a fibre bundle of moduli spaces, denoted by M̃∗, the
projection is simply

(t, (E,∇, g)) 7→ t

Boalch showed that:

Lemma 6.1 ( [Boa99]). The bundle M̃∗ of extended moduli spaces is a complex manifold,
moreover, the projection defined above makes it a symplectic fibre bundle.

the horizontal distribution on M̃∗

The isomonodromic deformation equation canonically determines an Ehressmann con-
nection on this fibre bundle. In fact, choose any (t,∇t) ∈ M̃∗, the set of the solutions of the
isomonodromic deformation equation:{

∇ = d− A|dA+ [Ω, A] +
dΩ

dz
,A(t) = ∇t

}
:= L∇t
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i.e the collection with the monodromy data as ∇t, is the submanifold of M̃∗, its dimension
equals to dimX, the horizontal distribution can be given by

Φ : (t,∇t) 7→ T∇tL∇t

This connection is called the isomonodromic connection. In [Boa99], Boalch gave the
symplectic nature of the Jimbo-Miwa-Ueno’s isomonodromic deformation equation:

Theorem 6.2 ( [Boa99]). The isomonodromic connection on the fibre bundle M̃∗ of ex-
tended moduli spaces is a flat symplectic connection, i.e, the local analytic diffeomorphisms
induced by the isomonodromic connection between the fibres of M̃∗ are symplectic diffeo-
morphisms.

6.2 The Computations of Stokes Matrices

As we mentioned before, the Stokes matrices are very important invariants in the theory
of linear ODEs, thus it is our natural mission to compute them. However, even in the case of
2nd order, the computations of them are rather complicated. For example, Prof. Xiaomeng
Xu gave an explicit formula of the Stokes matrices of the following ODE [Xu16]:

dy

dz
=



(
λ1

λ2

)
z2

+

(
u1 a

b u2

)
z

y

although this is a very simple case, the computation is already very complicated.
The difficulty is, when we do the re-summation process of a formal solution Ŷ , for

example, the Borel-Laplace transformation, there will be singularities appeared after doing
the Borel transformation, if the singularities are poles, the Stokes matrices can be computed
by the residue formula, however, in the most of the cases, the singularities are even worse,
they will be essential singularities, hence the residue formula cannot show its power any
more. In the late 20th century, the French mathematician J.Écalle developed a method
called the Alien calculus [SM10], which are now turned out to be a powerful tool to deal
with the essential singularities.

There are also some algebraic ways to compute the Stokes matrices. In [dHMS20], the
authors used Kashiwara’s Riemann-Hilbert correspondence for holonomic D−modules to
compute the Stokes matrices attached to irregular singularities arises from Fourier-Laplace
transforms of regular systems, and then in [HJ22], the authors used the similar method to
compute the Stokes matrices of the generalised Airy’s equations.
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6.3 A Glance at Nonabelian Hodge Theory

When a compact Riemann surface X is given, one can consider two different but
equivalent things, the first one is the irreducible representation of the fundamental group
π1(X) −→ GLn(C), the other one is the (flat) holomorphic connections on holomorphic de-
gree 0 vector bundles. The Riemann-Hilbert correspondence on Riemann surfaces asserts
that there is a 1-1 correspondence between the holomorphic connections and the irreducible
representations of the fundamental groups (by taking holonomy representations), if we use
the terminologies in moduli spaces, this correspondence is saying that there is an isomor-
phism between the moduli spaces:

MdR(X,n) ∼=MB(X,n) := Homirr(π1(C);GLn(C))/GLn(C)

where MdR(X,n) on the left hand side is the moduli space of holomorphic connections on
rank n degree 0 vector bundles E −→ X, it will be called the de Rham site in our story,
and MB(X,n), the moduli space of representations, will be called the Betti site.

In [NS65], Narasimhan and Seshadri found the equivalence between the moduli space of
stable vector bundles Un(X) and the moduli space of irreducible unitary representations of
π1(X). Later, Hitchin, Simpson and some other mathematicians found that it will be better
to consider the “complex version”, then the notion of Higgs bundles yields.

A Higgs bundle (E,Φ) is just a holomorphic vector bundle E together with an extra
Higgs field Φ ∈ Γ(Ω1⊗End(E)), we will useMDol(X,n) to denote the moduli space of rank
n degree 0 Higgs bundles, this will become the 3rd site of our story, namely, the Dolbeault
Site. These 3 sites are isomorphic [Sim92]

MDol(X,n) ∼=MdR(X,n) ∼=MB(X,n)

In Hodge theory, we have Hodge decomposition for any compact Kähler manifold X

[Voi03]:
Hk(X;C) ∼=

⊕
p+q=k

H(p,q)(X;C)

when we take k = 1:
H1(X;C) = H(1,0)(X;C)⊕H(0,1)(X;C)

applying Huerwitz theorem and Dolbeault theorem [Huy05], we will have:

Hom(π1(X);C) ∼= H0(X; Ω1)⊕H1(X;OX)

Recall that the holomorphic vector bundles can be classified by the 1st cohomology
group of non-Abelian sheaf H1(X,GLn) (the cocycles are exactly the transition functions).
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Hence a Higgs bundle (E,Φ) can be identified with an element in H0(X;End ⊗ Ω1) ⊕
H1(X,GLn), which is a non-Abelian analogue of the right hand side in Hodge theory, and
by replacing C to a non-Abelian group GLn(C), the left hand side becomes the Betti site.
So, the correspondence between Dolbeault sites and Betti sites is a non-Abelian analogue of
Hodge theory.

So now, we can aware that what we’ve done so far is a generalisation on the de Rham
site, by replacing the holomorphic connections to the meromorphic ones, and the Betti site
is no longer the representations of the fundamental group, but a groupoid. In Boalch’s later
work [Boa13] [BB04], he established a meromorphic version of the correspondence in those
3 different sites, and called it the “wild non-Abelian Hodge theory”.
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