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Abstract

This is a learning note for Seiberg-Witten gauge theory. The main part of this note will include the
classical theory oFSeiberg—\X/itten invariants and their applications in the topo]ogy of smooth 3,4-manifolds.
For some excellent ]earning literatures, I'd like to refer to [1=3]. This note will be innovated inconstant]y, the
later topics will contain the theory and applications of generalised Seiberg-Witten equations.

In order to define the Seiberg-Witten equations, we need to establish what is a Spin structure at first,
since Seiberg-Witten equations describe the existence of some certain spinor fields 1) and some connections
A on aline bundle associated to a chosen Spin® structure.

Like other gauge theories (Yang-Mills, Chern-Simons, etc.), the solutions of Seiberg-Witten equations
are gauge invariant under a gauge group G action, the speciality in here is that che gauge group G is Abelian
(a group of U(1)—valued smooth functions), that’s why the Seiberg-Witten gauge theory is also called an
Abelian gauge theory. Then it is natural to discuss the Seiberg-Witten moduli space Mgy, that is the space of
solutions modulo the gauge equivalency.

However, the study of the moduli spaces is a hard part in gauge theory, since the moduli spaces maybe
not compact, not smooth or hard to give an orientation. However, different from other gauge theories
(especially for Yang-Mills), the Seiberg-Witten moduli spaces have a lot of good properties due to the less
non-linearity of the Seiberg-Witten equations, which are 1st order non-linear elliptic PDEs.

The main good properties of the Seiberg-Witten moduli space Mgy are: it is compact, it is smooth
under a small perturbation, it is orientated so that we can do intersections (and hence we can define numerical
invariants, namely the celebrated Seiberg-Witten invariants).

The proof of these properties are standard arguments in geometrical analysis and infinite-dimensional
differential topology (mainly the Fredholm theory), and these techniques are frequently appeared in many
other geometric theories which involve the analysis of elliptic PDEs (such as Floer homology, J—holomorphic
curves and Gromov invariants, Donaldson theory, etc.). At this point, the proof of these properties will be
a core part through this note, because they are toy models which can help us to understand more difficult
topics.

Since the ana]ytic nature of Seiberg—Witten gauge theory is much easier than Yang—MiHs, and it can
study the topology of low-dimensional manifolds as well, it makes learning Seiberg-Witten theory a good
start point for those who want to know the topological applications of gauge theory. I will write some of its
applications in the topology of Kihler surfaces. For more applications of gauge theory to complex geometry

and 4—manifolds, I heard that [2,4, 5] are excellent references.
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Part I: Spin Geometry

1 Clifford Algebras and Spin Groups

Let’s first start with some algebraic preliminaries, a good reference of this part can be
found in [2,6]. A little preliminary knowledge about quaternion is expected, they can be
found in Appendix LA,

The notion of Clifford algebras arises from the algebraic presentations of rotations.

For example (cf. Proposition 1.1), the rotations in R2 can be presented by multiplica-
tions of unit complex numbers; the rotations in R? can be presented by unit quaternions
via v > hvh, where b € H with |h| = 1, and v € R3 is identified with ImH = R?;
as for R* the presentations of rotations need 2 unit quaternions via h +— qhq_, where
q+ € U(1,H), and h € R* is identified wich H.

We shall see later that these C, H or H @ H are actually the irreducible representa-
tion spaces of the Clifford algebras associated to the underlying Euclidean spaces. Their
elements are called spinors, which can be Vague]y understood, as was imp]ied by its ]iteral]y
meaning, the generators of rotations.

1.1 Clifford Algebras and Their Representations

1.1.1  Clifford Algebras and Their Complexifications

Let (V (-, -)) be a real n—dimensional vector space equipped with an inner product.
Definition 1.1 (Clifford Algebras). The Clifford algebra C/(V') of V' is defined by:

TV
(ve@v—|v?|veV)

CUV) =

v|? means (v, v) scalar products with the identity

where TV is the tensor algebra of V|
1eTV. &

The multiplication in Cl(V') is denoted by a dot -. Briefly speaking, the Clifford
algebra of V' is just an algebra generated by elements in V' subordinate to the relation
v-v = —|v|% Also, notice that for any z,y € V, we have

(r+y)?=@+y) -@+y) =—(2P+y*) +2-y+y- 2
= —(e+y.z+y) =— (1> + [yl*) — 2(z,y)
we see that
roy+y-r=-2zy) (1)

In particular one can dcducc th'dt
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Lemma 1.1. [f 1, ..., %, is an orthonormal basis of V', then C¢(V') is an algebra generated by
1, x4, ..., x, subordinate to the relation:

2

€Tr. = —]_7

‘ = = =204
Ti-XTj=Tj Ti L F£ ]

Notice that the Clifford algebras are algebras over R, thus it is convenient to define
its complexification by tensor product C/(V') @ C. Now let’s compute some examples by
lemma 1.1.

Example 1.1. (1) If V. = R, then C/(R) = Rz]/(z* + 1)
complexification algebra is C ®@g C = C2!
(2) IfV =R?, then CE(RQ) is generated by 1, z, y, satisfying

which is C, hence the

)

=y =—1, zy=-—yz
note that if we denoted by ¢, 7, k the imaginary unit of the quaternions H, then by
letting = i,y = j, and xy = k, then we find that C/(R?) = H.

To compute the complexification algebra, we recall that each quaternion has a matrix
presentation by 2 X 2 complex matrices (see Appendix 1.A), hence H can be viewed

as a subalgebra of End(C & C), therefore
CUR?*) @g C 2 H ®g C = End(C & C)

(3) 1f V =R3, then CL(R?) is generated by 1, z, y, z satisfying

2 2 2
=2 =2r=—1

TY = —YT, T2 = —2T, Yz = —2Y

We claim that there is an R—algebra isomorphism C/(R?) = H & H.
One should be careful that an element (hy, ho) € H@ H is identified with the diag-

onal matrix , hence the multiplication is defined by the matrix multipli-

1 0
0 he
cation after a diagona] embedding. Therefore, as an R—algebra, H & H is generated

by the matrices

() (7))

and the generators also satisty the relation (2).

"Note that C as an R—algebra is actually R @ R, hence the complexification is simply by replacing R to
C in each component.
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(5)

With this in mind, we can define the isomorphism by expanding © +— e, y +— ey
and 2 — e3 .’

By the computation in 1.1(2), it is clearly that the complexification algebra is simply
End(C?) & End(C?).

By the same method, one can check that C/(R*) & End(H @ H) (the multiplication
in the later algebra is the matrix multiplication). Indeed, the algebra End(H & H)
is generated by

= <1 _1)762=:(¢ {)’63::<j j>’€4::(k k) 6
RS PR PR

the isomorphism is defined by identifying z1 ... x4 with e; ... €4 and zox324 ...
12923 with €1 ... €4 correspondingly.

Consequently, the complexified Clifford algebra is just by replacing each entry of
A € End(H & H) to a 2 x 2 complex matrix, which is End(C*).

In fact, the Clifford algebras have a periodicity 8:
Cl (R*®) = ct (RY)

therefore it’s enough to calculate all Clifford algebras for & < 8. The computa-
tions and the proof of the above periodicity can be found in [6, §1.4], the list of the
classification can be found in table 1. &

Remark 1.1. As was illustrated in Example 1.1 (4), we can associate each vector & € R* with
ad x4 complex matrix presentation. That is by replacing 1,7, k of those e;’s in (3) to some
2 x 2 complex matrices defined in (13). &

1.1.2

Representations and Clifford Modules

Definition 1.2 (Representation). A (complex) representation of a Clifford algebra C£(V')

is an R—algebra homomorphism:

p: CUV) — Ende(W)

where W is a C—linear space, and End¢(W) is viewed as an R—algebra. &

2On the reverse side, the isomorphism is defined by expanding

1 1-— -
(1,0) = =25 0,1) - = (6,0) o P (0,0) o P
G.0) =+ 2 0.5) o T (h0) e T (0, k) 0 21T

2
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Remark 1.2. 1f W is a representation space of a Clifford algebra C4(V'), definition 1.2 is
equivalent to say that W endows with an V —action, called the Clifford multiplication:

Cl: VW —W ovw—uv-w
which satisfying
v (v-w) = —|v]Pw
The representation space W of C/(V) is also called a Clifford module. &
Here are several examples of Clifford modules.

Example 1.2. (1) If W is a quaternionic vector space, in particular it is also a vector
space over C, then W is a C/(R3)—module. Because for a ¢ € R®* = ImH one
always has ¢* = —|q|*.

In particular His a C/(R?*)—module, the Clifford multiplication is simply the quater-
nion multiplication.

As a notation convention, we denoted by $ the quaternion H when it’s regarded as
a vector space over C, and End($) stands for the complex endomorphisms of §.

(2) 1F Wy, Wy are two quaternionic vector spaces, then Wy @ Wy is a C£(R*)—module.
Here the Clifford multiplication is defined by (identifying R* with H)

Cl:R*@ (W, @ Wy) — Wy @ Wy

_7 (4)
h ® (wy, ws) — (wy, ws) (2 Oh)

since one can easily check that

() ()

In particular, H & H is a C/(R*)—module, which is denoted by $, @& $_ by the

previously convention.
(3) For any Euclidean space V| the complexified exterior algebra

A (@A) ouc

k>0
is a C/(V)—module. The Clifford multiplication is given by 3
Cl:v@wr tyw — (v,) Aw (5)

3By identifying V' = V* via Euclidean inner product, A Vi is also a C€(V')—module, where the Clifford
multiplication can also be write by (5): v - w := t,w — v A w, where w € A V. One should notice that, if
we write w = wi A - -+ A Wk, the contraction ¢,w is actually
k
ty(wy A+ Awyg) := Z(fl)“l@,wi)wl Ao ANy A A wg
i=1
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wherev € V,w e AVZ. In fact,

v (v w) = t(tew — (v, ) Aw) — (U, ) A (Lyw — (v, ) Aw)
= —1,({v, ") Aw) + (v, ) A Lw

= —|v’w
y )

Remark 1.3. As R—linear vector spaces, AV = P, /\k V' is isomorphic to C/(V') by
expanding the following map:

a:/\V—>C€(V)

witha(A vy A== Avg) = X0y - -+ - v However, this isomorphism is not an algebra
isomorphism.

Moreover, if W is a Clifford module, then the Clifford action on W can also be ex-
tended to a linear /\ V-action. &

Recall that from representation theory, a representation p : C€(V) — Endc (W)
is called irreducible, it W has no non-trivial p—invariant subspaces. Correspondingly, the
irreducible representation space W is also called an irreducible Clifford module. It is called
reducible if it is not irreducible. It is called completely reducible, it W can be decomposed
into direct sums of 1-dimensional irreducible Clifford modules.

Here are several examples of irreducible Clifford modules.

Example 1.3. (1) The complex vector space § = H is an irreducible C/(R?)—module.

~J

To see this, as was stated in Example 1.2 (1), the R* 2 ImH action on & is given
by h = qh, where ¢ = qii + q2j + qzk € R3 h € §. By the matrix presen-
tation of quaternion (cf. Appendix LA equation (14)), we can write this Clifford
multiplication as:

¢ :R® = ImH — End(§)
s < V=lgs  —q+ \/—_1612) (6)
o+ V—-1¢ —/—1g3

where the last matrix has two distinct eigenvalues £1/—1|g| for each ¢. Then by
a theorem in representation theory, a 2-dimensional representation is irreducible if and
only if there are no common eigenvalues, which ends the proof.

(2) 'The complex vector space $+ @ $_ is an irreducible CE(RA‘)—module.

In fact, as was shown in (4), the Clifford multiplication can be viewed as:

¢:R*~2H — End($§. ©$_), h— (2 —()h) (7)
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where h, —h are presented by 2 x 2 complex matrices (cf. Appendix 1.A), we can
compute the last matrix also has two distinct eigenvalues #=/—1|h| for each h €
R* = H], and cach eigenvalue has a eigen-subspace of dimension 2, namely E,f
Hence $+ @ $_ is reducible if and only if E,f are common eigen-subspaces for all
h € H, which if and only if #4/—1|h| are common eigenvalues for all b € H, which
is not the case. Therefore $+ @ $_ is an irreducible Cl(R*)—module. &

Each representation of C/(V') can be extended to a representation of its complexifi-

cation CL(V') ®g C.

Example 1.4. (1) The representation of C£(R*)®rC on § can be obrained by expanding

@ to
¢c : ImH ®g C — End($)

just by replacing each ¢; € R appeared in (6) to some complex numbers ¢; € C.

Note that it is clearly that ¢ is faithful and the image are exactly the traceless
endomorphisms of §, denoted by Endg(#), hence we obrained an isomorphism of
C—linear spaces

ImH ®g C =2 Endy($) (8)

(2) Similarly, one can also expand ¢ to ¢¢ : H®r C — End($, @ $_) to obrain a
representation ()EC€<R4> ®r C, by replacing h appeared in (7) to some 2 X 2 matrix.
[t also obviously that this representation of H®g C is faichful as well, and the image
can be identified with the C—linear space Hom($', ; §_), hence we obtained

H®p C = Hom($+; $_) 9)
)

Luckily, the irreducible Clifford representations are not too much, and they can be
classified completely:

Theorem 1.1. Let V' be a Euclidean space over R.

« IfdimV = 0 mod 2, then there is an unique irreducible representation of CL(V'); If
dimV = 1 mod 2, then there are only 2 irreducible representations of CL(V'). The

dim V'

irreducible CL(V')—module has complex dimension ol* ], denoted by $.

« Every irreducible representation of CL(V') extends to a representation of CL(V') @g C which
is again irreducible.

Table 1is a list of the numbers of irreducible representations 1y and the dimensions
of irreducible Clifford modules for each CK(R’“) (k <38).
We refer to [6, §1.5] for a detailed proof of theorem 1.1.
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Table 1: Classification List of Irreducible Representations

k CL(RF) ClRF) ® C i P

1 C CeC 2 C

2 H End(C?) 1 C?

3 HeoH End(C?) & End(C?) 2 $

4 End (H?) End(C*) 1 FLo8
5 End(C*) End(C*) @ End(C*) 2 ct

6 End(R®) End(C?®) 1 C®

7 End(R®) @ End(R®) End(C?) & End(C?) 2 C®

8 End (R9) End (C19) 1 Ccle

1.2 Spin Groups and Spin Representations

One important application of Clifford algebras is to construct rotations in R™.

Definition 1.3 (Spin group). The Spin group Spin(V') C Cl(V') is a group generated by the
elements with the form vy - - - - - Vg, where vy, ..., v9p € V with [v;> = 1. &

Remark 1.4. Recall that by (1), each element v € V with |v]? = 1 has an inverse in C£(V/),

namely vli=—v &

Now, let 0 := vy - - v, € Spin(V), w € V, let’s compute what is 0 - w - oL By
applying (1) we have for any v;:

vi-w- vt = v w v =~ - (= w — 2{v;, w))
= —(w — 2(v;, w)v;)
= _Rvi(w)

where R, (w) means reflection of w along v;t. Therefore we have

U'U}‘J_l:(_1)2kU1"‘U2k'U}‘Ul"'UQk

= Ry, 00 Ry, (1)

V2k

Recall that Cartan-Dioudonne¢ theorem asserts that every rotation in SO(V') can be
decomposed as the even times compositions of reflections. Thus we obtained:
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Lemma 1.2. The group (real) representation
¢ : Spin(V) — SO(V), 0~ (w—o-w-o ")
is an epimorphism. Moreover we have ker ¢ = Zg = {£1}, hence
Spin(V')/Zy = SO(V)
which means Spin(V') is a double cover of SO(V).

Remark 1.5. « Notice that Zy = {£1} C Spin(n) as the center, and ¢ maps Zs to the
identity matrix.
« For dimV > 3, m(SO(V)) = Zy, hence by double covering, 1 (Spin(V)) is an
index-2 subgroup of Zsg, which is trivial, hence Spin(V') is simply connected and in
fact an universal cover of SO(V').

Example 1.5. (1) Spin(1) = Z,. Since the unimodular vectors in R are just £1, they

generate themselves in C/(R) = C.

(2) Spin(2) = S1. Since the unimodular vectors in R? are the unit circle ST, which is
embedded in the (¢, j)—plane in H (see Example 1.1 (2)), hence it generates itself.

(3) Spin(3) = U(1,H) = Sp(1). Since R* = ImH is diagonally embedded into H &
H = Cl(R?) via g — (—q,q) (cf. Example 1.1 (3)). Hence Spin(3) is generated by
even-times product of the elements with the form (—¢, ¢), where |¢|* = 1. Which
is equivalent to be generated by ¢ € ImH in H (since product even-times kills the
negative sign), which is U(1, H). Topologically it is an S® 22 SU(2), indeed a double
cover of RP? 22 SO(3).

(4) Spin(4) = Spin(3) X Spin(3). Because R* 2 H is embedded in End(H?) = C/(R*)

via h — 2 _Oh (cf. Example 1.1 (4)), and even-times products of the elements

of the anti-diagonal martrices will be diagonal, thus Spin(4) is actually generated by
unit quaternion in H & H, which is Spin(3) x Spin(3). &

Remark 1.6. It will be convenient to write
Spin(4) = Spin(3) x Spin(3) = SUL(2) x SU_(2)

since it will help us to write down the Spin representations simply by matrix multiplication.
s

As a Lie group, the Lie algebra spin(n) is isomorphic to s0(n) according to lemma
1.2. 'Then it is natural to study the exponential map exp : spin(n) — Spin(n). Since
Spin(n) C Cl(R™), we hope the value exp X can be presented by elements in Clifford
algebra, so that the rotation action of exp X on R™ can be presented by multiplication in
Cl(R™).

Note that s0(n) is identified with A*R™, the basis can be write as ¢; A ¢;, where ¢;
are orthonormal basis in R™. It stands for a matrix E;; — Ej;.
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Theorem 1.2. The cxponcmial map is computcd as

exp : spin(n) — Spin(n) C C{(R")
0 0 (10)
exp(@(ei N ej)) = COS 5 -+ sin 561 © €5

proof. Notice that in SO(n), exp(6(e; A e;)) represents for the rotation in (i, j)-
plane, rotating along e; — €; by f-angle. Then it suffices to notice that the action

> 9+ ! 9+ ! B
w s = n=e;-e;|-w-(cos—+sin—e;-e;
CcO 9 S1 9 j LOS2 1 5 j

precisely means the rotation in (4, j)-plane, rotating along e; — e; by f-angle. That will
prove the claim.
Another important fact about spin groups is their representations.

Theorem 1.3. There is a unique complex representation of Spin(V'), denoted by
p: Spin(V) — GL($v)

distinguished by the property: p can be extended to an irreducible representation of CL(V') (cf-
Theorem 1.1).

Such a representation is called the Spin representation of Spin(V'), the elements in $y are
called spinors.

We refer to [2, §2] [6, §1] for a detailed proof. We shall just construct some examples.
Remark 1.7. 'The spin representation doesn’t imply that it is either irreducible or the unique
Spin(n)-representation. In fact, when dim V' = 2k is even, the spin representation is not
irreducible, since $45 will split into two sub-representation, namely $2k+ D For_ -
Example 1.6. (i) The spin representation of Spin(3) = U(1, H) = SU(2) is simply

p:Spin(3) & SU(2) — GL($), A— A

which is an irreducible representation.
(ii) The spin representation of Spin(4) = SU,(2) x SU_(2) (cf. remark 1.6) is:
p: Spin(4) 2 SUL(2) x SU_(2) — GL($,. @ §_)
by
A
(h‘Jr?h*) = (h+7h*) ( " A_)
which is reducible with two irreducible subspaces $, respectively, the restricted ir-
reducible representation of on § . will be denoted by p4, hence p = p, ® p_. &

Remark 1.8. - Note that p(£1) = Fldg,, by the property p extends to an irreducible
Clifford representation.
» We can equip with $, an Hermitian inner product so that it is Spin(V)-invariant,
hence the spin representation p is in fact taking values in U($,).
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1.3 Spin® Groups
It is natural to define a subgroup in the complexification algebra C/(V') @ C.

Definition 1.4. The group Spin®(n) C C/(R™) ®g C is the subgroup generated by Spin(n)
and the unit complex numbers U(1).

Remark 1.9. (a) Apparently,

Spin‘(n) = {A® g|A € U(1),0 € Spin(n)}

= U(1) - Spin(n) = Spin(n) xz, U(1) (1

Since we can define a map
¢ : Spin(n) x U(1) — Spin“(n), (0,\) = A® 0

which is an epimorphism and ker ¢ are of the form (A - 1, A1), A € R, hence it
could only be £1.

(b) As a notation convention, an element in Spin®(n) will be denoted by A ® o, and
U(1) is embedded in Spin®(n) as the center.

(c) Like the real case (cf. lemma 1.2), Spin®(n) also admits a well-defined real represen-
tation:
¢° : Spin‘(n) — SO(n)

by
)\®a»—>(vn—>a~v-a’1)

since 0 yields the same representation.

Moreover, ¢° is full and ker ¢° = U(1), hence we have a short exact sequence of Lie

groups

(

1 — U(1) — Spin“(n) -2 SO(n) —> 1
(d) By (11), the Lie algebra of Spin®(n) is simply
spin(n) @ iR = so(n) @ iR

hence by (10), we can compute the exponential map by
. 8 . H it
exp(f(e; Aej,it)) = | cos g tsingeie; | ®@e
Example 1.7. (i) For dimV = 3, we have

Spin®(3) 22 U(1) - SU(2) = U(2)

Therefore, we see that Spin®(n) is not the complexification of Spin(n), since Spin®
group may not even be complex Lie group.
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(ii) For dimV =4, we have
SU(2) x SU(2) x U(1)
Loy

~ {(Ag“ Ai) ‘ AeU(l), Ay € sugz)}

_ {(AO+ AO) € U, (2) x u_(2>‘ dec A, = detA_}

Similar to the spin group (cf. Theorem 1.3), Spin® groups also have a distinguished

I

Spin©(4)

spin representation.
Theorem 1.4. Let p : Spin(V') — GL(8y,) be a spin represencation, then p extends uniquely
to the representation

p° 1 Spin(V) — GL($v)

such a distinguished representation will still be called the spin representation of Spin®(V').

Hence by theorem 1.1, we have dime 8 = Z[Jigv]. A proof can be found in (2, §2.6].

Remark 110 (a) Like the Spin(n) case, $V also admits a Spin®(n)—invariant Hermitian
inner product, see remark 1.8, hence p° is actually taking values in U($V).

(b) There is a well-defined surjection
Pace : Spin‘(n) — U(1)/Zy — U(1)
A® 0o+ [Adetp(o)] = (Adet p(a))?

whose kernel is precisely Spin(n). It is well-defined, since for different presentation

—A® (—0),we have
pic((=A) ® (=0)) = (=Adet(=p(0)))* = (Adet p(0))?
hence we have a short exact sequence of Lie groups:
1 — Spin(n) — Spin(n) 25 U(1) — 1

() Note that for A® 1 € U(1) C Spin®(n), we have p°(A ® 1) = A - Idg due to
the fact that p® also extends to an irreducible C¢ (R™) ®g C representation. See
following diagram.

CLR™)

-.... irreducible Clifford representation

ClR") ®g C | i End($,,)

J J

C

Spin(n) s GL(S,,)

J /

gpm
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Here are examples for spin representations for n = 3,4, and the computations of
Pdet-
Example 1.8. (1) The spin representation of Spin®(3) = U(2) is simply trivial, since it
is taking value in U($) = U(2), p° is just the identity.
As for pge;, write an element in Spin®(3) as AA, where A € SU(2), hence by remark
1.10 (b), we have
Pacc(AA) = A2 det A = N\
hence py.. is just taking the determinant of matrices in U(2) = Spin®(3).
(2) The spin representation of Spin®(4) is again trivial

(wi,w) € 5, F_ = (wy,w-) (Aé* )\,(31)

which is not irreducible. It is also convenient to define two irreducible sub—represemations

pS on $i (cf. Example 1.6 (ii)):

NG VING
P+ ( O+ AA_) = )\A:t c U($ﬂ:)

As for pger, we compute by definition that

AA 0
Pdet ( O+ )\A_> = M (det A} )(det A_) = det A2

AL 0

thus if we write elements in Spin®(4) as (A4, A_) = ( 0 A

U(2) and det A, = det A_, then we have *
Pac(Ar, A_) =det Ay =det A

) where AL €

Appendix LA The Quaternion Algebra H

Defiition 1.5 (Quaternion). The set of quaternion numbers H is an unital R—algebra

generated by 1,7, 7, k, in which 7, j, k are called the imaginary unit, subordinate to the
O

relation

P ==k =ijk=—-1

A quaternion number is an element ¢ € H, which can be presented by
q=qo+ @i+ qJ + gk

where ¢; € R. &

“In genera], Pder can have nothing to do with the determinant. For examp]e

Spin®(6) = SU(4) xz, U(1) = U(4)

the spin representation is again the trivial one, so we have pg. (AA) = A% but det \A = AL
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Remark 1.11. (1) It is convenient to embed R? into H by identifying R3 2 ImH. Under
this setting, it is convenient to denote a quaternion by ¢ = qo + g, where g is called the
scalar part or real part, q is called the vector part or imaginary part.

Notice that for two pure imaginary quaternions g, h € R3 = ImH, we can compute
their multiplication by

gh=—q-h+qxh

where - and X are inner and exterior product in R? respectively. Therefore, the multipli-
cation of two quaternions ¢, h € H can be write as

qh = (qoho — q - h) + (@oh + hoq + q X h) (12)

(2) Like complex numbers, we can also define the conjugate of a quaternion ¢ = qo+q
by ¢ := qo — @, and the square-module of ¢ is defined by |g|? := ¢g, which is indeed a
positive real number by equation (12).

(3) Notice that H is a divisible algebms. That is for any non-zero quaternion ¢ # 0,
there exists an inverse ¢~ * such that g1 = ¢~ ¢ = 1. Here the inverse is simply ¢/|q|?,
in particular, if ¢ € U(1,H) which is a unit quaternion, then g = ¢~ . &

Quaternion can be used to present rotations in R?.

Proposition 1.1. (i) Every rotation in SO(3) can be presented by h +— qhq where ¢ €
U(1, H).
(i) Every rotation in SO(4) can be presented by h +— q1hq_ where ¢x € U(1, H).

Like complex numbers, a quaternion also admits a matrix presentation®. In fact, de-

noted by
=) ()0 )

then the quaternion ¢ = qo + ¢1% + ¢2J + g3k can be write by
g= 0TV —los —at V-l o End(C2)
@ +vV—1¢ G+ vV—1gs
hence the algebra H is embedded as an R—subalgebra in End(C?).

Moreover, one can find that

(14)

3
decg =7 af = lqf
i=0

The matrix presentation can help us to compute the complexification H®g C, which
was claimed in example 1.1 part (2).

°In fact, the only divisible associative algebra over R are of dimension 1,2 and 4. The only divisible
non-associative a]gebra over R is the octonion @, which is of dimension 8.

®Algebraically, when we say an algebra A admits a k—matrix presentation, that implies there is an irre-
ducible k—representation of A into Endy (W), where W is a k—vector space.
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Proposition 1.2 (Complexification). The complexification H@r C is isomorphic to End(C&C).
proof. Recall that End(C & C) as an R—algebra is generated by 1, 4, j, k which was

. 1
defined in (13) together with ((1) (1)), as a C—algebra, it is generated by 1, ¢ and ((1] 0).
Now, as an R—subalgebra, H is generated by 1,4, 7, k, by complexification, it allows
us to multiple with y/—1, that yields the matrix <(1) é), hence H ®g C = End(C & C)
as an isomorphism between C—algebras. &
Intuitively, an element of the complexification H ®g C can be simply understood as
replacing cach ¢; € R in (14) to some complex numbers ¢; € C.

Remark 1.12. In particular, if we regard H as a complex vector space & (cf. example 1.2 (1)),

we have

End(§) = H®g C
X )
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2 Spin Geometry and Dirac Operators

In what follows, we assume (M, g) is an n—dimensional compact oriented ” Rieman-
nian manifold. Let P be the frame bundle of M, which is a principal SO(n)—bundle on
M under our settings. Let

Gag : U, N Ug — SO(TL)

be the transition functions of P, where {U, } should be chose to be a good cover of M.

We will globalize all constructions in § 1 to the geometric objects on M.

2.1 Spin Structures and Spinor Bundles

Definition 2.1 (Spin Structure). A spin structure on (M, g) is a choice of Spin(n)—lifting

of the transition functions:
Jas U, N Uﬁ — Spin(n)

in the sense that $0Jap = gap and such that {gas} can define a principal Spin(n)—bundle
P. Where ¢ is the standard real representation of Spin(n) defined in lemma 1.2. &

We can see that if (M, ¢g) admits a spin structure P, then P — P is a double cover.
Now, if (M, g) is a spin manifold with a spin structure P, then by theorem 1.3, the
structure group Spin(n) has a distinguished spin representation p on §,,, so we can define

an adjoint bundle of P.

Definition 2.2 (Spinor Bundle). If (M, ¢g) admits a spin structure P, the adjoint bundle

$M = P X p,Spin(n) $n

is called the spinor bundle of M with respects to the chosen spin structure. A section ¢ €

['(#) is called a spinor field or simply a spinor. e

Remark 2.1. « Recall that by remark 1.8, the fiber B isa complex vector space en-

dowed with a Spin(n)—invariant Hermitian metric, hence §; is in fact an Hermi-
dim M . L X
tian vector bundle with rank 2[ 5] (cf. Theorem 1.1), where the Hermitian metric
. . . . [Jim M]
can be defined point-wisely. In particular it has U { 212 as the structure group.

» The transition function of § is simply
pogag : Ua N Ug — U($n)
and the transition of det §; is simply
~ det
det p (Gap) : Ua NUs — U(F,,) — U(1)

A manifold M is oriented is equivalent to say its first Stiefel Whitney class vanishes w1 (M) = 0.
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« We call two spin structures P, P" are equivalent if they are isomorphic as principle
bundles, hence it is equivalent to say that they have the same spinor bundles.

Example 2.1. (1) When dim M = 3, as was shown in Example 1.6 (i), the spinor bundle
of M is a rank 2 Hermitian vector bundle whose fiber is 8, the spinor bundle will

still be denoted by 8.

Since Spin(3) 2 SU(2), we can see that the determinant line bundle det § = A*
has the transition function (cf. Example 1.6 (1)):

det(p (Gap)) = det Jop = 1
thus det $ of a 3-manifold is the trivial line bundle M x C, and hence § has the
structure group SU(2).

Due to the simply connectedness of SU(2) 2 S? and dim M = 3, I conclude that
$ is trivial by an obstruction theoretical argument.

Recall that by (8) in Example 1.4, we have

TM & C = Endy($) = /\(TM © C)

(2) Ifdim M = 4, as was shown in Example 1.6 (ii), the spinor bundle of M is a splitting

rank 4 Hermitian vector bundle

=8 08

where § are rank 2 Hermitian bundles, induced by p4 respectively (cf. example
1.6 (ii)). Sections in F($i) are called spinor fields with positive or negative chiralicy
respectively.

Similarly, by Example 1.6 (ii), we see that for a 4-manifold, the determinant line
bundle of its spinor bundle is trivial :

4

/\($+65$,)=det$+:det$,:M><C

and by (9), we have
TM @ C = Hom($,;8_)

However, not every compact oriented Riemannian manifold admits a spin structure,

the obstruction was described by the second Stiefel-Whitney class wq (M).

8\We will see later (cf. Example 2.3 (1)) that for any spin manifold M, the first Chern class 0F$M associated

to a spin structure satisfies

0=ci($y) mod2
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Theorem 2.1. « Anoriented Riemannian manifold (M, g) admits a spin seructure if and only
« If (M, g) admits a spin structure, then all possible spin structures are classified by cohomol-
ogy classes in H*(M; Zy), that is they were classified by real line bundles over M.

Before proving the theorem, let’s first recall some notions in characteristic classes, I'd
like to refer to the excellent books [7-9] for more about this interesting topic.

Recall that all real vector bundles over (M, g) are 1-1 correspondent to the princi-
pal O(n)—bundles over M, denoted by Pring(ny (M), which by homotopy theory, are 1-1
correspondent to

Prinogy (M) €= [M; BO(n)]
In here, BO(n) = BGL(n,R) = Gr, (R*) is the classifying space of O(n), and we have
the cohomology ring
H* (Grn(Roo), Zz) = Zg[wl, ceey wn]

where those wy, € H*(Gr,,(R*®); Zy) = Zy are the generators.

Now, for a real vector bundle £, let fr € [M; Gr,,(R*)] be the unique map distin-
guished by the property that E is the pull-back of the universal bundle EO(n) along fg,
denoted by f}; the pull-back homomorphism between

fr: H* (Gr, (R®);Zy) — H"(M;Zy)

Defiition 2.3 (Stiefel-Whitney Classes). The k—th Stiefel-Whitney class wy, (E) is defined
to be the pull-back of f(wy) € H*(M;Z,). &

Proof of Theorem 2.1. Notice that by lemma 1.2, there is a short exact sequence
1 — Zy — Spin(n) -2 SO(n) —» 1
which induces a short exact sequences between non-Abelian sheaves:
1 — Zy — Spin(n) N S0(n) — 1

where Spin(n), SO(n) stands for the sheaves of smooth functions over (M, g) taking
values in Spin(n) and SO(n) respectively. Zg stands for the locally constant sheat’and ¢ is
the double cover which was defined in lemma 1.2.

It induces a (not too) long exact sequence in cohomology”:

oo HN M Zy) — HY(M; Spin(n)) > HY(M;:SO(n)) 2 H*(M;Zy) (15)

For short exact sequence of non-Abelian sheaves
1—F —G—H—1
the induced long exact sequence will stop at
0— HYX;F) — - — HY(X;H)

which is to say the functor H? will lost its exactness (the definition of H is similar as the cocycles of vector
bundles). But here we can extend it to H?(M;Zz) because Zs is the usual Abelian sheaf.
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We see that an SO(n)—bundle E = {g.5} € H'(M;SO(n)) admits a Spin(n)—lifring,
if and only if it has a pre-image under ¢*, which if and only if, due to the exactness of (15),
We claim that wy is actually taking the second Stiefel-Whitney class. To see this, we
will generalize the construction in Definition 2.3 for SO(n)-bundles.
For each E| Let gg € [M; BSO(n)] be the unique map such that £ = ¢ (ESO(n)).
We shall claim that

(i) The cohomology ring of BSO(n) is
H*(BSO(n); Zy) = Zs|ws, ..., wy]
where wy € H¥(BSO(n); Zy) = Zg are generators for k > 2, and
HY(BSO(n); Zy) =0
(i) The pull-back cohomology classes gg(wi) € H¥(M;Zy) coincide with f5(wg),

where fg € [M;BO(n)] is unique mapping such that £ is the pull-back of the
universal bundle EO(n) along fg.

If claim (i) & (ii) can be proved, then the result follows directly by applying (15) to the
classifying space BSO(n), and notice that g}; induces the following commutative diagram
of exact sequences:

H(M; Spin(n)) S N HY(M;S8O(n)) —2— H*(M;Z,)

9*ET g*ET g*ET

HY(BSO(n); Spin(n)) —— HY(BSO(n); SO(n)) —2~ H?(BSO(n); Z,)

La

hence the ws in the first line is indeed taking second Stiefel-Whitney class of E, because
the wy in the second line sends ESO(n) to the generator.

Proof of (i) can be done by induction, which can be found in [10, Theorem 1.3]. Claim
(ii) is a consequence of (i), since the wy(E) defined by ¢}, (wy) should satisty the axioms of
Stiefel-Whitney classes, hence the result follows by the uniqueness.

For the classification of Spin(n)—structures of P = (gap), we first fix a spin structure
Gap as a frame point whose spinor bundle is denoted by $,,. Let L be a real line bundle
with the transition functions

Tap : Us NUz — GL(1,R) = Zy = {1} C Spin(n)

We can define a new Spin structure by twisted the original one by L, namely 7,5Gq5. It
indeed defined a spin structure since it is clearly satistying the cocycle condition and

¢ (rapap) = A(Tas)® (Jas) = ¢ (Gap) = Jap
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/ . , . . N
Let $M be the spinor bundle associated to the twisted spin structure, then we find it has
transition functions (cf. Remark 1.8)

P (rasdop) = P(Tap)p (Gas) = Tapp (Gas)

thus $/M = $y @ L in particular, the novel twisted spin structure coincides with the
original one if and only if their spinor bundles coincide, hence which if and only if L is
trivial. Hence all spin structures are classified by the real line bundles, and in particular it
is an affine space modeled on H'(M; Zsy) after picking a frame point. &

Some other proofs can be found in [11, §7.5.6] [6, §2.1] or Qiaochu Yuan's answer.

Example 2.2. « It (M, g) is a 3-manifold, then M admits a spin structure. Because
every compact oriented 3-manifold has trivial tangent bundle, which can be proved
by applying Wu's formula to compute wo(M) = 0 (see [12] [7, Exercise 12.4]0 or
here and here).

« M = CP? has no spin structures, since
’U)Q(IP)Z) =C (]PQ) mod 2

and ¢;(P?) € H*(P%;Z) = Z is the generator, which is not zero modulo 2. &

2.2 Spin® Structures

Definition 2.4. A Spin®—structure on (M, g) is a lifting of the transition functions gap of

P o
Gop  Ua NUz — Spin‘(n)

in the sense that ¢¢ 0 g5 5 = gap, and g4 satisty the cocycles condition so that it defines
a Spin®(n)-bundle P°. Here ¢ is the standard real presentation of Spin®(n) defined in
remark 1.9 (c). &

Like the spin structures, if (M, ¢g) admits a Spin® structure, then by Theorem 1.4 we
can also associate it with an adjoint Hermitian vector bundle.

Definition 2.5. Let P¢ be a Spin®—structure on (M, g), then the adjoint bundle
P X pe,Spin®(n) $n

will still be called the spinor bundle of M with respect to the chosen Spin®—structure, which
will still be denoted by #,. Here p¢ is the unique spin representation of Spin®(n) which
extends the spin representation of Spin(n), see theorem 1.4. &

Different form the spin case, the determinant line bundle of a Spin® structure is a bit
subtle.

10An answer can be found at this Math Stack Exchange post.


https://math.stackexchange.com/questions/808263/spin-manifold-and-the-second-stiefel-whitney-class
https://math.stackexchange.com/questions/1107682/elementary-proof-of-the-fact-that-any-orientable-3-manifold-is-parallelizable
https://mathoverflow.net/questions/346977/parallelizability-of-3-manifolds
https://math.stackexchange.com/questions/275370/second-stiefel-whitney-class-of-a-3-manifold
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Definition 2.6. The determinant line bundle of the Spinc structure ! is defined to be
L:=Px, C
where pyec was defined in remark 1.10 (b). &

The existence of a Spin® structure is much easier than the spin structure, since the
map ¢° is not a double cover, it has kernel U(1) = S hence P¢ can be viewed as a circle

bundle 2 over P.

Theorem 2.2. (i) (M, g) admits a Spin®—structure if and only if wa (M) is a modulo 2 re-
duction of some cpr € H*(M;Z) .
More precisely, if (M, g) has a Spin© scructure, then the first Chern class ey (L) € H*(M;Z)
of the determinant line bundle of the associated Spin® structure satisfies

’U)Q(M) = C (E) mod 2

Conversely, if wo(M) is a modulo 2 reduction of some ¢1(L) € H?*(M;Zs), then there
exists a Spin® scructure on M such that its determinant bundle equals to L.

(i) If (M, g) is a Spin® manifold, then all possible Spin® structures are classified by the coho-
mology classes in H*(M; Z), that is they are classified by complex line bundles on M.

Proof. 'The proof is similar as the proof of theorem 2.1.
Notice that (cf. remark 1.9 (¢) & 1.10 (b))

@ 1= ¢° X pyec : Spin(n) — SO(n) x U(1)

A® o (¢(o), N(det p(0))?) (16

is a well-defined group homomorphism with kernel Zg, thus we have the short exact se-
quence of non-Abelian sheaves

1 — Zy — Spin‘(n) = SO(n) x S — 1
and there is an induced exact sequence

——— HY(M; Spinc(n)) —5£— HYM;8O(n)) @ H' (M; SY) —>— H*(M;Z,)

HY(M;8O(n)) ® H*(M;Z)
(17)

"One should be very careful that this £ may not be det S However, when dimM = 3 they indeed
coincide, see example 1.8.

2\We will see from the proof of theorem 2.2 that P¢ is actually a double cover of P x L.

Bt is equivalent to say the third Stiefel Whitney class of M vanishes w3 (M) = 0, see [6, Appendix B.13].
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notice that the last morphism § is we @ (1 0 ¢;), where wy is taking the second Stiefel-
Whitney class, ¢; is taking the first Chern class of a line bundle in H*(M;S*), r is the
modulo 2 reduction.

Now if (gag) € H'(M;SO(n)) admits a Spin®lifting (§<s), then we see thar its
image under ¢* in (17) is exactly gog @ Pdec (§25>, they stand for the frame bundle P and
the determinant line bundle £, respectively. Therefore, by the exactness of (17), M admits
a Spin® structure one must have

UJQ(M) +roc (E) =0
which precisely means

lUQ(M) = C (ﬁ) mod 2

Conversely, if a line bundle £ = (hag) € HY(M;S") = H*(M;Z) satisfying the
modulo 2 reduction of ¢1 (L) is wo(M), then the image of gop @ hop = P & L under 6 is
0, hence again by the exactness of (17), there is a Cech cocycle (§55) € H'(M; Spin‘(n))
such that
©* (éig) =¢° (flgﬂ) D Pder (§§g) = GJap D haﬁ

that is there exists ' a Spin®—structure with its spinor bundle §; such that
det $M =L

As for the classification of Spin® structures, we first fix a Spin® structure (f];[g) and
let # s be its spinor bundle. Notice that for any line bundle L = (Aq3), the transition
functions Agp ® ggﬁ also define a Spin® structure, since (cf. remark 1.9 (c))

¢° (Aaﬁ ® f];ﬁ) =¢° (g;ﬁ) = Jap

~ . . .. 5 / .
and Aag ® g5 obviously satisfies the cocycle condition P, Let By be the spinor bundle
associated to the twisted Spin® structure, we see that its transition functions are (cf. remark

1.10 (o))
pc (Aaﬂ ® ggﬁ) = )‘aﬁpc(ggﬁ)

\We can see that the existence of such a Spin®—structure is not unique, since by the exactness of (17), it

is unique if and only it 6 = wg @ 7 o ¢ is surjective.

However, this is not always the case, for example, if (on a Spin® manifold) H?(M;Z) has a 2-torsion, i.c.
there exists a line bundle L = (o) with L? = L® L is trivial, then for a given Spin® structure ggﬁ (whose
determinant line bundle is denoted by £), we have a new Spin® structure obtained by twisted by L, namely
Aap @ g g, its associated determinant line bundle is denoted by L’. These two Spin® structures not coincide
unless L is trivial, but we can find that £ = £/, since the transition function on £’ is (cf. remark 1.10 (b))

Pdet (Aa,ﬁ’ & gg,@) = /\iﬁpdct (gzﬂ)

and L ® L is trivial implies )‘Z,B =1, hence £ and £’ have same transition function.
What’s more, one can show by the universal coefficient theorem that d is surjective (and hence the Spin©
structure is uniquely determined by its determinant line bundle) if and only if H2(M; Z) has no 2-torsions.
BThe Spin® structure obtained by this way is called rwisted by a line bundle L
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hence $/M = $ ® L. Therefore, the twisted Spin® structure coincides with the original one
if and only if
Su=8y=Fu®L
which if and only if L is trivial, hence all Spin® structures S(M)
point (§5), is an affine space modeled on H?*(M;Z). &
We refer to [6, Appendix D], [13, Theorem 5.8] or this note for some other proofs

)

after picking a frame

Example 2.3. (1) Every spin manifold is a Spin® manifold, since Spin(n) C Spin®(n),
we can extend its spin structure to a Spinc structure by twisting by any line bundle

L.

Hence in particular every oriented compact 3-manifolds are Spin® manifolds. But
different from the spin case (see Example 2.2), neither the spinor bundle & nor the
det $ associated to a Spin® structure are necessarily to be trivial unless it was twisted
by a trivial line bundle, since Spin®(3) = U(2).

As a special case, let § 3, be the spinor bundle associated to the spin structure, then
the spinor bundle of the “trivial” Spin® structure (that is by twisting with a trivial
line bundle) is simply S ® L, where L is a trivial line bundle.

Moreover, the determinant line bundle associated to this trivial Spin® structure is

L = det ;. Therefore, by theorem 2.2, we have

0=wy(M)=rci($y) mod?2

(2) CP?is a Spin® manifold. It is not the only case, since every oriented compact 4-
manifold admits a Spin® structure. See theorem 2.3.

Remark 2.2. « If'a Spin®manifold (M, g) is also spin, then we can divide its Spin® struc-
ture by its spin structure, that yields a well-defined line bundle Ly. If we denoted $§\/l
and )/ to be the spinor bundles associated to the Spin® and spin structures respec-
tively, then we see that

$?\/[:$M®LO

hence sometimes, Spin® structure is also called the rwisted spin scructure by a line bundle
Ly. As a consequence, we have

det %, = det($4; @ Lo) = det $y @ Lg[%]
hence we have their first Chern classes

‘1 ($§\/1) = () + 2[%]01(110) =0 mod 2

The determinant line bundle of this Spin® structure is L(Q)

- If a manifold is just Spin®, the notation §,; ® Ly is not well-defined. Bur in some
literatures (cf. [3]), they will still use this notation to present the spinor bundle, and
Ly is called the vircual line bundle.


https://nicolas-ginoux.perso.math.cnrs.fr/spincstruct.pdf
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Theorem 2.3. Every oriented compact 4-manifold (M, g) admits a Spin® structure.

Proof. We first claim that the Spin® structure exists for a simply connected (M, g). Since
from the short exact sequence of coeflicients:

1237 7, —1
we have
o HA(MZ) — HX(M;Zs) -2 H3(M;Z) =0
where we have by Poincaré duality that H3(M;Z) = H,(M;Z) = 0. Thus wy(M) has a

lifting if and only if its image under § is zero, which is exactly the case.

Now if M is not simply connected, thanks to the compactness, we can choose a good
cover {U, } together with a decomposition of the unit f, : Uy — R.

Since Uygy = UaNU,NU, is simply connected, every cocycle 1o, € H*(Uppry; Zo)
which presents wg (M) can be lifted into some 7o, € H*(Ungy; Z), we will use this piece-
wise lifting to construct a Spin®(4)-lifting of the frame bundle P = (gap).

Let

hag = exp <\/ —177'2.]%77&57) UL N Ug — U(l)
Y

by computation we find that
haphgyhya = Napy

Also, it we denoted by Gap a Spin(4) lifting of the cocycle gas, we know that the obstruc-
tions are exactly the second Stiefel-Whitney class

Napy = Gap9py9va

hence
haggaﬁ : Ua N UB — Spinc(n)

defines a Cech cocycle which is a lifting of gag. &

Remark 2.3. For a 4-manifold, recall that by Example 1.7, its Spin® structure has the form

~c )\oz,BAoaﬁ @) . s ¢
35 = ( 5 + )\aﬁAaﬁ_> : Uy, NUg — Spin©(4)

hence by example 1.8 the transition function of the determinant line bundle £ is
Aoy UaNUz — U(1)
Note that its Spin®-spinor bundle has the form $+ @ §_ (cf. Example 1.8), we see that
L =det§, =det $_

and
£®£:dCt<$+@$_)
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2.3 Structures on Spinor Bundles

Spinor bundles § 5, will have three natural scructures. First each fiber endows with a
Clifford action, which makes it a bundle of Clifford module. Then there is a natural con-
nection induced from the Levi-Civita connection, which will be called the spin connection.
Finally, these two structures make §; becomes a Dirac bundle, hence there is a natural
Dirac operator defined on it.

2.3.1 Bundles of Clifford Module

Same as definition 1.2, we can globalize the notion of Clifford modules to a geometric
object.

Definition 2.7. A (complex) vector bundle £ — M is called a bundle of Clifford module,
if it endows with an action of T M

Cl:TM®FE — FE
such that v - (v - 5) = —g(v,v)s = —|v]*s. &

So a bundle of Clifford module is just a vector bundle with each fiber endows with a
Clifford multiplication. Some examples can be constructed by globalizing example 1.2 and
1.3.

Example 24. (1) If (M, g) is a spin or Spin® manifold, then its spinor bundle $M 2SS0~
ciated with the spin or Spin® structure is a bundle of Clifford module.

(2) In particular if dim M = 4, then its spinor bundle (with respect to a spin or Spin®

structure) splits as §, @ F_. Choose alocal frame ey, ..., e of T M, then the Clifford

multiplication of e;’s on the fiber (¢4, 9_) can be given by (see (4) and Example 1.3)

e () e () (z j01>,62-<w+,w><w+,w> (? 5) -

es - (Y, ¥-) = (Yp, ) < O> Ces - (g, ) = (g, ) (2 ’8)

.

where 1, j, k are the imaginary unit in H which should be presented by 2 X 2 com-
plex matrices, see (14). We can also see that the Clifford multiplication changes the
chirality.

(3) Similarly, if dim M = 3, the Clifford action of a local frame e, ez,e3 on ¢ €
$ is given by multiplication with 4, j, k respectively, where again i, j, k should be
presented by (14).

(4) 'The exterior bundle A\ T¢M is a bundle of Clifford module, where the Clifford mul-

tiplication can be given by (4).
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Remark 2.4. (i) Identifying TM = T*M by the Riemannian metric, for a cotangent

vector w in T* M, its covector w* can be expressed by the local frame e, ..., €, of
TM by
n
w* = Z w(e;)e;
=1

hence if E' is a bundle of Clifford module, then there is also an action
Cl:T"M ®@FE — FE

given by

n

Clw* ® s) = Zw(ei)ei -8

i=1

(ii) If £ is a bundle of Clifford module, by extending the Clifford multiplication of
T*M, there is also an action of the exterior bundle A T¢ M, which maps such as for
w a 2—form,
Cl:w® s Zw(ei,ej)ei ej-s

i)j

(iii) If E is a bundle of Clifford module, by extending the Clifford multiplication of

T M, there is also an action of the exterior bundle A\ T'M (and hence also A T*M),
which will still be called the Clifford multiplication, and it maps as

Cl:eqg N~ NepyR@SrH>re €S

(iv) In particular, by (18) in Example 2.4, we can compute that if dim M = 4, then the
self-dual part /\3_ T*M acts trivially on & that is for self-dual 2-form w™,

w? - (1/}4-’1/}—) =wt- <¢+70) = (w+ ’ 1/}-1-70)

and dually, the anti-self-dual part acts trivially on 8.

Moreover, by computation, we find that this Clifford action
2
Cl - T*M — End
A d (5.)

is faithful, whose is image is just su ($+), hence /\i T*M can be identified with

su(fy).

232 Connections on Spinor Bundles

Now we assume (M, g) is a spin or Spin® manifold, then on the spinor bundle §,,
associated to a chosen Spin® or spin structure, we can canonically construct a connection
V on it, called the spin connection.
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« First let me recall that if there is a local diffeomorphism (for example covering map)
between two Lie groups ¢ : G — H, then the tangent (d¢); identifies their Lie
algebras g = h. Now if w is a connection on a principal H-bundle Py — M
(which is locally an h-valued 1-form on M) and let Py be a principal G-bundle
which lifts Py along ¢, then w uniquely ' induces a connection @ on Pg by

(dp)1w =

« Now, we assume (M, g) has a spin structure ]5, of course it is a Spin(n)-principal
bundle which lifts the SO(n)-frame bundle P along ¢. Thus there exists a unique

connection @ on P induced by the Levi-Civita connection w on P.

Notice that locally, the Levi-Civita connection w = (w;;) is an s0(n)—valued 1-
form, it can be write as

w = Ww E wij€; N €;
1<J
, , 2 ,
where e; A e;’s are basis of s0(n) = A”R™ (see theorem 1.2).

Hence it uniquely induces a connection @ on P by the tangent map of the real repre-
sentation

(d¢); : spin(n) = so(n) — so(n)

which we claim locally it is

—_

5 Z wijei A €j
1<j

Indeed, we can compute by theorem 1.2:

1 <%szjei /\ej> wa do): <€@ /\€]>

1<J 1<J

= wj; % t:0¢ (GXP (%(61: A 6;’)))

1<j

Zw d 0] t—i— i te e
= i T C0s — + sin —¢€; - €,
Tt \"7 2 2

i<j

d
= Zwij % GXp(t(ez A €j>)

i<j =0

= Zwijei/\ej = Q

i<j

'®The uniqueness is due to the fact that ¢ is a local diffeomorphism and hence (d¢); is an isomorphism.
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« Moreover, the induced connection @ will induce a connection V on its adjoim bun-

dle 8,
ViT(8y) — DBy @ T M)

by
(dp); : spin(n) = so(n) — gl($,)

it can be write as

Vi = d + ((dph) (§) = do + 5 S wiger -9

1<J

1 (19)
:dw‘FZZWijGi'ej'w
2747

We call this induced connection V the spin connection on %, induced by a chosen
spin structure.

« Now, if (M, g) is a Spin® manifold with a Spin® structure P¢, let £ be the associated
line bundle. Then from (16) we know that P¢ lifts P X det £ along

@ 1= ¢° X pye. : Spin‘(n) — SO(n) x U(1)
A0 = (¢(0), (pae(A @ 7))

Let w be the Levi-Civita connection on P as before. In order to induce a connection
on P¢ we also need to fix a U(1)-connection A on L.

Write A = d + /—1a where a € Q'(M;R), which is an U(1)-connection on L,
hence now, by the same method as before, (dp); will induce a connection V4 on

B, it write as (by remark 1.9 (d))

1
VA1/1:d¢+§ (a#—ngjezej) w
i<j

) ) (20)
:dw~|—§aw+1;wmelejw

where a -1 is the Clifford multiplication by 7% M, see remark 2.4. This V 4 will still
be called the spin connection on §; although it is induced by a Spin® structure.

By our construction, the spin connections V or V 4 will satisfy the following property:

Theorem 2.4. (i) The spin connection V is compatible with the Levi-Civita connection D on
TM, that is for any v € T(TM) and ¢ € T($;)
V(v-) = (Dv) ¢ +v- (Vi) 1)

where - stands for the Clifford multiplication.
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(ii) The spin connection is also compal:iblc with the Hermitian metric <-, > on $ M in the sense

that for any v € T(T M) and 1,19 € T($), we have

W = (Vyth1,2) + (1, Vuibo) (22)

The proof of this two results can be found in [6, Prop 4.4 & 4.11] (or leave as an exer-
cise).

Then it is natural to study the curvature of the spin connections. In what follows we
denote

Q=D?=dw+wAwe QP (M;End(TM))

to be the curvature of the Levi-Civita connection D = d + w, and denote R = V2 or
Ra = V% to be the curvature of spin connections, which are End(§;)-valued 2-forms,
as a notation convention, we use Re,.; = R(e;,€;) to be the value 7 of a curvature R at
€; N €; € /\2T1M

Also recall that from Riemannian geometry, the scalar curvature s4(z) of a Rieman-

nian manifold (M, g) is defined by
= Z Qijij Z gac elej 61 )
1,5
= Z Ricg €, Gj
1]

where e;’s are local frames of T'M at .

Lemma 2.1. Let €y, ..., €, be a geodesic local orthonormal frame of TM, that is D.,e; = 0,
then

(a) If M is a spin manifold with the spinor bundle By, then forany € F($ A1), the curvacure
R satisfies
1 S
B Z € €jRe,~ej (¥) = Zg¢
0]

(b) If M is a Spin® manifold with the spinor bundle $ 5, and let A = d + a be a connection
onvits determinant line bundle £, then for any 1 € T'($), the curvature R 4 satisfies

where Fy = da is the curvature of A, the - means the Clifford multiplication (see remark

2.4 (iii).

The proof can be done by a straightforward computation of R and R4, which can be
found in (3, pp. 63] (or leave as an exercise).

7 ~ . 2 . . .
YA two form w is a form wy : T, M — R which is smooth as  varies.
xr xr
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23.3 Dirac Bundles and Dirac Operators

The spin connection give a new structure on 811, called the Dirac bundle.

Definition 2.8 (Dirac Bundle). A bundle of Clifford module £ — M is called a Dirac
bundle if there is a connection V on E| called the Dirac connection, such that it is compatible
with the Levi-Civita connection D on T'M:

V(v-s)=(Dv)-s+uv-(Vs)
where v € I'(T'M), s € I'(E) and the - is the Clifford multiplication. &

What makes Dirac special is that there exists a natural operator on I'( E):
Definition 2.9 (Dirac Operator). If E is Dirac bundle with a Dirac connection V, then the
operator

D:TI(E) 5 I(T*M ® E) -5 T(E)
is called the Dirac operator. We call D? the Dirac Laplacian operacor. &

Remark 2.5. Letey, ..., e, be alocal frame of T'M, then Dirac operator has a local expression

n
Ds = E €+ Ve,
i=1

what's more, one can show that this local expression is independent of the choice of the

frames. o

Example 2.5.  (a) If (M, g) is a Spin® or spin manifold, then the spinor bundle §,; is a
Dirac bundle, the Dirac connection is the spin connection, since by (21) they satisfy
the compatibility condition. As a notation convention the Dirac operator on ',
will be denoted by I or ID 4 if we refer to a Spin® structure.

(b) In particular, if dim M = 4, the spinor bundle splits as $. @ §_ recall tha the
Clifford action on $+ D5 changes the chirality (cf. Example 2.4 (18)), hence the
n

, where

Dirac operator ]ﬁ also splits as (

lD—i—
Py :T(8:) — T (55)

which changes the chirality.
(c) For a special case, if (M, g) is just R* with the standard Euclidean metric, then it

has both unique spin and Spinc structures %, We will compute lD or ]ﬂA Concrete]y.

. + . )
For the spin structure, let’s compute " first. Recall that $ can be viewed as the
trivial quaternionic line bundle R* x H, hence a section f € T'($) can be viewed

ISThCy actually coincide.
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as a quatemionic—va]ued function on M. Since the Levi-Civita connection is the
trivial one, the spin connection is simply taking directional derivative, hence by

(18) we have

3
DTf=CUvy) =t ( gf e d)
i=0 7t

Cof of  of . of
= o0 9z 0r’ T Oy

hence we see that lD just the quaternionic Cauchy-Riemann operator.

k

Similarly, by (7) we have

_ 0 o . o0 . 0
lD __8$0+81’1Z+8.’L'2j+81'3k

Pt 0
o pp
Let A = d+ +v/—1a be a connection on £ = det . = det §_, then by (20), Dy is

simply
v—=1a-

and it is clearly that ]22 = ( ) is the usual Laplacian on R*.

Daf=Df+—F—

When M = R?| the Dirac operator is just
0 0 0
_ . . 1
lp (%12 + 8@‘7 + 6173

Again, lf is the usual Laplacian on R?, hence the Dirac operator can be understood
as the “square root” of the Laplacian.

If M = R?, then lDi are just the usual Cauchy-Riemann operator.

Recall that the Levi-Civita connection can be extended to 7% M and A TEM, which
will still be denoted by D. Hence by (5), the exterior bundle A TEM is a Dirac

bundle with the Levi-Civita connection D as its Dirac connection.

Moreover, the Dirac operator is just the Hodge operator D = d+9, where § = —xdx
is the Hodge codifferential.

To see this, we notice that for the induced Levi-Civita connection on %M, one has

dw = ZLeiDeiw
- Zg(€i7 ) A Deiw

by remark 2.5 and (5), the result follows by a straightforward computation:

Dw = Z e+ De,w = Z (te; De;w — gles, ) N\ De,w)

% 1=1

=(d+ 0w
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Remark 2.6. For ID 4, it is obviously that by (20), we have thatif a € Ql(M; v/ —1R) then

A + a is another connection on the determinant line bundle £, then

a -

Davab =Dav + 7

2.4 Properties of Dirac Operators

In this subsection, I will introduce 3 main properties of the Dirac operator. In this
section, the Dirac operators will be the ones on a spinor bundle By for M with a spin or
Spin® structure.

24.1 Formal Self-Adjointness

Let (-, -), be the Spin® or spin invariant Hermitian metric on each fiber of §, then
choose a volume form (an orientation) dV on M, we can define an L?—inner product

(+,+)zz on F($M): for any two 11, 19 € F($M), define
<¢17w2>L2 = /N[<r(/}law2>mdv

Theorem 2.5. The Dirac operator ZD or ]ﬁ Als formal—sdfadjoint. That is
(lpw17 1/}2)[/2 - (wla lpw2)L2
the formula for ID 4 is similar.

Proof. Let ey, ..., e, be a geodesic orthonormal frame on T'M, that is D,,e; = 0, then
by (22) and remark 2.5 we have

2 = i've' , dVv = — Ve_ e - AV
(Dr, o)1 /M <;6 N0 ¢2>x /M;( b1y e )
[ (B — Ve ) v
i=1 g
[ (H e e V) av
i=1 g

& a(l/)l, €; @/)2>x
— . — E R R AV
(¢1, Ipwz)L /M 2 De,

The second term in the last line looks likes a divergent of some vector field. Indeed, define

X € I(TeM) by

n

X(l’) = ZWH, €;* 1/12>x 1€

i=1
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then we find
n

diVX:Zag 617 Za¢laez ¢2

=1 =1

hence by Cartan magic formula and Stokes theorem, due to the compactness of M we have

/ZM&/:/ dideV:/ LxdV
Y Oe; M M

_ /M d(1xdV) — /M Lxd(dV)

the proof of I 4 is similar. &

242 Weitzenbdck Formula

Another useful property of Dirac operator is a Bochner type formula, called Weitzen-
bick formula. To formulate this formula, we need to introduce what is a connection Lapla-
cian first.

Recall that any connection V on E can be extended to £ ® /\k T*M by
Vw®s=(Dw)® s+ (—1)*“w @ Vs

where D is the extended Levi-Civita connection /\k T*M, see example 2.5 (f). We can
regard I' <E @ N T*M) as QF(M; E), i.e. k-forms with values in E, then the extended

V can be seen as a map
dy : Q¥ (M; E) — Q"Y(M; E)
in particular, there is a “de Rham-like complex”
— Q" Y(M; E) 2% QF (M E) 25 QMY (M B) —

this is indeed a complex if and only if V is flat.
Like what we do in Hodge theory, we can define a codifferential

d = (—1)"F Dty odg o % - Q¥ (M E) — QF(M; E)

Definition 2.10 (Connection Laplacian). Let (£, V) be a bundle over (M, ¢g) with a con-
nection V, the operator

V*i=dy
V'V T(E) — T(E®T*M) — T'(E)

is called the connection Laplacian. &
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The connection Laplacian has the fb]]owing properties.

Theorem 2.6. (1) It has a local expression: let €1, ..., €, be a group of orthonormal local frame
on T M, then
V'Vs ==Y (VeVes—Vp,es) (23)
i=1

and this expression is independent of the choice of the frames.

(2) V*V is formal self-adjoin, that is if there is a metric (-, -) on E comparible with V in sense
of (22), then

/<V*VS1,82>;EVO]M:/<V51,V52>xVO]MI/ <81,V*V52>1V01M
M M

M
The proof can be found in [2,14] (or leave as an exercise).

Remark 2.7. Notice that in the local expression (23), the term — >V, V., already looks
likes the usual Laplacian, but this form depends on the choice of basis, by minus the second
will kill this dependency. Obviously, if we choose €;'s to be the geodesic frame such that
D.,e; = 0, then we sce that the second term will be annihilated.

Theorem 2.7 (Weitzenbdck Formula). Let (M, g) be a spin or Spin® bundle, lec V or V 4 be
the spin connection on the spinor bundle § 5.

(1) For ID, we have
Py = V' + Ly
(2) For lDA we have

Fq-4
2

Dl = VaVay + 24 +

Proof. For the first formula, since (23) is independent of choice of basis, we can take
€1, ..., &y be the geodesic frame local frame on T'M, hence by lemma 2.1 and remark 2.5 we

lDZID = iei : Vei <i €; - Vequz)) = Zei tC5c Veivej¢
=1

J=1 ]

have

" 1
= — ; Ve Vet +5 X#j ei-ej (VeVe, — Ve, Ve,) 9

. 1
=V V¢ + 5261 T€j Reiej(qvm
2y
= V'V + 2y

Similarly, by lemma 2.1 (b) we can prove the second formula. &
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Remark 2.8. 1f dim M = 4 is a Spin® manifold, and let A be a connection on the determi-
nant line bundle £ = det ., = det §_, recall that from example 2.5, the Dirac operator

on $+ D9 splits as le, then for ¢ € F($+), the Weitzenbock formula reads as
— A+ [ Sg 1 +
Dala = ViV + o+ S0 (24)

where F7} € Q2 (M; V —1R) is the self-dual part of the curvature Fjy, it is due to remark
2.4 (iv) that an anti-self dual 2-form acts trivially on $+. &

243  Atiyah-Singer Index Theorem

From now on, we assume (M, g) is compact oriented Riemannian manifold of even-
dimension (and in particular we will interest in the case dim M = 4). Recall that the Dirac

PTT ($a) — T (Far)

Definition 2.11. The index of the Dirac operator is defined as

operator D splits as

IndD) = IndlD+ := dim ker lD+ — dimker P~
the index of 1D 4 is similar. &

The index of the Dirac operator is an analytic invariant, it measures how big is the
space of solutions of the linear elliptic PDE Dy = 0, the importance is that it is also a
topological invariant.

Theorem 2.8 (Atiyah-Singer). If M is a 2n-dimensional Spin® manifold with L the determinant
line bundle, then for any connection A on L, the index of ID 4 is a topological invariant:

Ind = / A(M) — ch (L)

where A is called the Hirzebruch class, ch(L) stands for the toral Chern class.

For more details about Hirzebruch classes and Chern-Weil theory can be found in [14].

The following example is the index of the Hodge operator d+6 on the exterior bundle
AT M, although it is not a spinor bundle, the example is good for us to understand what
does the index measure.

Example 2.6. The index of D = d + § can be defined as

IndD :=dimker D™ — dimker D™

where

D+ . Qeven (M, R) N QOdd(M; R)
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we see that w € ker D if and only if w is harmonic, and from Hodge theorem we know
dimker D' = Z dim sz(M) = Z dim H%(M; R)
dimkerD™ = Z dim H*~1(M) = Z dim H*~Y(M;R)

hence we find that

IndD = i(—l)kdim H*(M:R) = x(M)
k=1

which is a topological invariant. &

However, for this note, we will use a simpler formula for Spin® 4-manifolds.

Recall that when dim M = 4, the Hodge *—orperator decomposes the 2-forms into
the self-dual and anti-self-dual parts, hence there is a same decomposition on all harmonic
forms

HA(M) = H2(M) & HE(M)
Definition 2.12 (Signature). The signature of a 4-manifold M is defined as
sgn(M) := bt — b~ =dimH3 (M) — dimH> (M)

Theorem 2.9. The index of Dyondy =48 + D 8 _ associated to Spin® structure on a 4-manifold

” nd I, = — /M (pl(éw) B c%(2£>>
=g /Mc%w)

where L is the determinant line bundle of the Spin® structure, p1 (M) = co(T'M & C) is the first

Pontryagin class.

Here is an application of the index theorem, I refer to [14] for more interesting appli-
cations.

Theorem 2.10 (Linchnerowicz). If a compact oriented 4-manifold M is spin, then it admits a
Riemannian metric g with positive scalar curvature s4(x) > 0 only if its signature is zero.

Proof. Consider the Spin® structure which is twisted by a trivial line bundle L from
the original spin structure. Then by Example 2.1, we know that

a(L)=c(L)=0

where $,; = $, @ §_ is the spinor bundle associated to the spin structure. So by Atiyah-
Singer index theorem, we have
sgn(M)
8

== lndlDA
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Now, we pick A to be a trivial connectionon £ = L. If ) € T'($, ® L) satisfies ZDXQ/J =0,
we have by Weitzenbdck formula (24)

0= <¢Z¢:¢,¢> = (VaVat,¥) . + <S4_g¢’w>L2 * (F;‘r : ?/)) L2

2 2

1
= ||VA¢||%2 + Z/Msg(x)|77/}($)|2volM

thus if s,(z) > 0 everywhere, there could only be ¢ = 0, therefore Ind D, = 0, that
yields sgn(M) = 0. &

By thC same argumcnt, We €an prove a much StTOHng rcsult:

Theorem 2.11. A compact 2n—dimensional spin manifold M admits a Riemannian metric whose

scalar curvature is positive everywhere only if the A-genus of M is zero:

0,00 = [ Aan =0
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Parc 11: Seiberg—Witten Gauge Theory
3 Sciberg—Witten Equations

3.1 Definitions and Seiberg—Witten Maps

Now we can formulate what is a Seiberg-Witten equation. From this section (M, g)
will be a compact oriented Riemannian 4-manifold, and we only pick a Spin® structure
on it, the spinor will be denoted by Sy = $+ @ $_ and £ = det $+ = det $_ be its
determinant line bundle.

We shall first define a quadratic map p1on $ .
Definition 3.1. Fora ) € T'($.,), define

Kl

W) =1 @yY* — Tld S $+ ® $j_ = End($+)

where 1) is the dual spinor of 9 in sense of the Hermitian metric. &

Remark 3.1. Since $, has complex rank 2, we can locally write ¥ = (11, 3), then p
computes as

(D (1 = el 2400y ) —
& (wz) 3 ( 2¢n11y |1ha|* — [41]? € V-lsu($y)

hence by remark 2.4 (iv), we regard (1)) as a pure imaginary self-dual 2-form.

Definition 3.2. The Seiberg-Witten equation is an equation of (¢, A) € I'($,) x A(L):

{zzm =0

(25)
Fi = p(y)

Example 3.1. Let M = R* let’s try to write down what a Seiberg-Witten equation looks
likes (or leave as an exercise). Well, in this case a spinor field with the positive chirality 9
can be viewed as a quaternionic valued function on R* and A = d + a a connection on
the line bundle £ = R* x C is simply Z?:o a;(z)dz;, by example 2.4 (18), we see that
those dz;’s acts on ¥ by multiplying with 1,4, 7, k respectively, thus (v/—1 action in H can
be take as multiplying with )

Piv= D"+ Lo

by example 2.5, we know that lD+ is just the Cauchy—Riemarm operator, @ 1) contains on]y
the products of components of ¢ and a.

The second equation involves Fi{ = da, which contains the Ist order linear partial
differentials of @;’s, and (1)) is a Oth order non-linear term.



Scibcrg—Wittcn Gauge rﬂlcory 41

Therefore, the Seiberg-Witten equation has the form
st order linear derivatives + Oth order non-linear terms = 0

which is a not extremely non-linear PDE. &

We can app]y Weitzenbéck fbrmu]a to obtain a very coarse property of\the solutions

of (25) .

Theorem 3.1. If the Riemannian 4-manifold (M, g) has positive scalar curvature, then every
solution of the Seiberg-Witten equation (25) has the form (0, A).

Proof. Assume (1, A) is a solution of (25), then by definition of p, we have

(), ) = ol 20

thus by applying Weitzenbock formula (24), we have

- 1
0= (PaBiwnv) , = IVavls + 5w w)is + 5 [ splvfPvola

L2
1
— Vvl + 3 [ 10 sy + ) volar
M
hence if s, > 0 for all x € M, then there could only be 1 = 0. &
[t is convenient to define the Seiberg-Witten map.
Definition 3.3. The Seiberg—Witten map is
SW:T(8,) x A(L) — T($_) x Q% (M;R)

(¥, A) > (wz%F} _ M(¢)) (27)

We will denoted by € := T'($,) x A(L) which is an infinite dimensional affine
space modeled on T'($, ) x QY (M;iR) and V = I'($_) x Q2 (M;iR) which is an infinite
dimensional vector space T'($_) x isu($ ). Wee can also see that (1, A) solves (25) if and
only if SW (¢, A) = 0, thus the space of solutions of the Seiberg-Witten equation is the
zero locus SW=1(0).

We can compute the tangent map of the Seiberg-Witten map.

Theorem 3.2. The tangent map dp,2)SW is
dg,0)SW : T($,) x Q' (M;iR) — V =T(3_) x Q3 (M;4R)

o) (Bh0+ S i) -2 )

where (da)™ stands for taking self-dual part.
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Proof. Just a straightforward computation, since
Y(t) =tV + ¢, A+ta): I — C=T(§,) x AL)
is a parameterized curve with y(0) = (¢, A) and 7'(0) = (¥, a). Then the computation

runs as

d
Q. SW(T,4) = 2| SW((1))
t=0

X )

3.2 Gauge Group Actions

The gauge group is Aut(L) C End(L£) = M x C, hence the gauge group can be
regarded as
G =C>(M;U(1))

Recall that by remark 2.3, 2 g € G acts on a section s on L by g - s = ¢*s, thus G acts on
A(L) by
A-g=2¢"dg+ A

We define the whole gauge group action on C by

(0, 4) g:= (97", A g)
Lemma 3.1. The space of solutions of (25) SW=1(0) is gauge invariant under G action. It is

equivalent to say the Seiberg-Witten map is G —equivariant:
C=T($) x AL) = V =T(8_) x Q% (M;iR)

| |
C >V

where G acts on' V by multiplying gt on the first faactor and trivially on the second.

SW

Proof. Let g € G, we have
+ + -
J?A.g(g : 1/1) = lpA-&-Zg*ldg (g 1¢)
+ — _
= D4 (97') + g 2dgy
= (dg™") -+ g P
1t +
=g 'Pa=g- (lDA@/))
For F;{_g, we notice that G is Abelian, thus the gauge transformation doesn’t change the
curvature hence FX_g = F}. And since [g] = 1, thus by definition of y we also have

w (g~ 1) = pu(v), thus we obrained
SW((¥, A)-g) = g-SW(¥, A)

which proves the equivariancy. &
Now, we can define what is the Seiberg-Witten moduli space.
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Definition 3.4. The Seiberg-Witten moduli space is the solutions of (25) modulo the gauge
equivalency:

MSW = SW‘I(O)/Q

Also notice that, the G-action is non-free " at (¢, A) precisely if ) = 0, thus we can define
the moduli space for irreducible solutions

siv = {(, A) € SWH0)[v £ 0} /G
X

However, one shall never expect SW™1(0) is a smooth submanifold of an infinite
dimensional affine space C since SW may not intersect transversally with 0, hence one
shall never expect Mgy or M%7, is smooth. In next section, we will discuss how deal
with the “transversa]ity” problem.

YA G action at x € M is called free if the stabilizer G, C G is trivial. It means the G-orbir at a free
point just looks likes G it self. Hence consequently, if we can take an open subset U of a manifold M such
that each point in U is a free point of the G-action, then the union of all orbits through U looks likes U x G,
it defines a coordinate chart in the quotient space M /G. Therefore, if G-action is free everywhere, the orbit
space M /G is a manifold, and the quotient map 7 : M — M /G provides that M is a principal G-bundle
over M /G.

In general, that U such that 771 (U) = U x G is called a slice.
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4 Seiberg-Witten Moduli Spaces

This section aims to introduce three main properties of Seiberg-Witten moduli spaces.
The first remarkable property is that Mgy is compact in C*°-topology (i.e. the space
for non-equivalent smooth solutions is compact). The second property is that SW can be
perturbed by a very small parameter 1) so that SW,, intersects transversally with 0. The third
property is that we can give an orientation on the moduli spaces.

4.1 Compactness of Mgy

We wish to prove Mgy is a compact moduli space in sense of C'*°—topology. Our
strategy will be as follows:

« O —topology is a bit strong, we will first replace it by a slightly weaker topology,

induced by the Sobolev norm W*2. Here we shall take k sufficiently large (k = 5 for

instance) so that some definitions work. The moduli space of W52 —solutions will

be denoted by M2

« Then, we will show all solutions of (25) are (up to a gauge equivalence) actually
bounded in W52-norm. Actually, they are (up to a gauge equivalence) bounded
in any W"*2-norm, for k > 0.

- Apply Sobolev embedding theorem (WhtL2 oy k2 §g compact embedding) we
know that M?®? is compact. Since for a sequence {(¢n, A,)} in C>? N SW1(0),
we know that it is gauge equivalent to a sequence which is bounded in W%2—norm,
hence by Sobolev embedding (cf. Theorem 4.1), there is a subsequence which is con-
vergent in W2 —norm, then by definition (of sequential compactness) the moduli
space M2 s compact.

- By upgrading k to any & > 0, we can show that Mgy is compact under C*°-
topology.

With this strategy in mind, let’s start from the Sobolev completions.

4.1.1 Sobolev Completions

Recall that the space T'($, ) admits an Hermitian L?-norm

2 = VO = 2\70
ll2 = /M (4, ) evolus /M ()Pl

we can define its Sobolev norm by

k k
s = Sl = [ S [9if woly
1=0 i=0

where V 4 is the spin connection, it acts on 9 can be viewed as acting on (1, 0) € T'(§ ).
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The Sobolev completion 0FF($+) under W¥2-norm is denoted by
Wk’2($+) = (F<$+>7 | - ”W’“’?)

It is a Banach space.

Similarly, by Hodge theory, we know there is an L%-norm on QP (M; R), defined by

ol = /M W A o

Its Sobolev W¥2-norm is defined by

k
lwllZz = || D'wl[3,
1=0

where D is the induced Levi-Civita connection on A” T*M. The sobolev completion of

QP(M;R) will be denoted by:

k
W (N MeR) = (@GR wes)
Notice that after picking a frame point Ay, the space of connections A(L) is an affine
space modeled on Q!(M;iR):
A(L) = Ag + Q' (M;iR)

we can also define the W*2—Sobolev completion on A(L), denoted by A*2(L).
Let

= {(¥,A) e C|(p, A) e WF($,) x A**(L)}
be the Banach affine space, and
K42 = (4, 4) € CH2SW (1, A) = 0}

It is also possible to give a Sobolev completion on g = C*(M;U(1)), denoted by
G*?2 however, from Sobolev multiplication theorem 4.1, we know that it is a Banach Lie
group whenever k > 3.

Here are the fundamental theorems of Sobolev spaces:

Theorem 4.1. Let M be an n-dimensional manifold, E — M an Euclidean vector bundle.
WHrP(E) is the W*P—Sobolev completion of T'(E), then

(1) If s € WEP(E), then s € WH(E), where

1 1
k—ﬁzn(———)zO
P q

and there exists a constant C' > 0 such that
|sllwes < C||s|lwwr

It is equivalent to say there is a continuous embedding

j:WFP(E) — WH(E)
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(2) (Sobolev Embedding Theorem) If

1
k—éZn(l——>>0
p g

then the embedding j is compact.
Q) Ifk— % > 7, then there is a continuous embedding
WHhP(E) — C"(E)
If s € WHP for some fixed p but for all k > 0, then s is smooth.
(4) (Sobolev Multiplication Theorem)

- Ifkp > n, then the Banach space W*?(M;R) is a Banach algebra.
« If kp < n, then we have a bounded map

Wk17p1 ® Wk27p2 , Wk’p

whenever n n n
ki——+ky——>k——
b1 b2 p

Here are the main ana]ytic properties of the operator ]ﬁA and F:{
Theorem 4.2. Let Ay € A(L) be fixed.

(1) (Elliptic Estimation) The Dirac operator D A, 18 a Ist order elliptic operator, it satisfies the
elliptic estimation

[Ullwrsre < C (1D ag¥llwee + [¢]l12)

(2) (Gauge Fixing Lemma) For any A € A(L), there exists a gauge transformation g € G
with A+ g = Ay + « such that

oo =0
HaHW’“»2 < CIHFXHWkﬂg + Cy

The proof of (1) is due to the fact that all elliptic operators satisfying the elliptic
estimations. The proof of the second statement can be found in [2, lemma 5.3.1] (or leave

as an exercise).
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41.2 Proof of the Compactness

Following the proving strategy listed at the beginning, we now focus on the solu-
tions in %2 We will show that all W>2-solutions (¢, A) are uniformly bounded in
Wk2 _norm for all k > 0.

Lemma 4.1. There exists a constant C' > 0 (which only depends on the geometry of (M, g) and
not depends on the choice of (1, A)) such that for all (1, A) € C>?

[l < C

Proof. We shall first prove it for C%—norm:

|¥]lco = sup |[¢(z)] < C

zeM

Choose xg € M be a maximal value of |1)|? (since M is compact). Let ey, ..., €, be the
geodesic local frame on T}, M, then by (22), (23), (26) and Weitzenbdck formula (24) we
have at zq:

4

< 2 —
0< AR = 861 862 de;

_ _QZ (Va, Va ) + Vv

(VAT ) — 20

:z<w;mz¢,w> WDy — (Ff )~ 2 Vil
SR |w|4—zrw|2

hence we obtained

et +2w(x0)|2’¢(370)\2 < —-2|Vay*| <0

thus
[ (20)|? < —s4(20) := C

Consequently we have

[l = [ futvolas < [ foan) ol

< CPvol(M)

which ends the proof. &
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Lemma 4.2. For any solution (¢, A) of (25) we have

where

1F{llze <€, |IFy|lze < C = dn?ci (L)

(L) = /Mcl(ﬁ) — (L)

Proof. 'The first inequality follows directly from lemma 4.1, as for the second one,

notice that by Chern-Weil theory

hence

i i
Cl(£> == %TT(FA) = %FA
AL) = L [ mnF
1 47'('2 M A A
1 _ _
=g ), BT E) A E 4 F)
1

L (IEA - 1)

which yields the desired result. &

Lemma 4.3. For cach k > 0, there exits a constant Cy, > 0 such that for any solution (v, A) €
C52, there exists a gauge transformation g € GF™H2 wich A - g = Ag + « such that

1@, @)llwr2 < Cr

Proof. We can prove by induction, however we need to establish for some small £ until

k = 4 so that the Sobolev multiplication theorem can be used.

- For k = 0, the result follows directly from lemma 4.1.

- For k = 1, by gauge fixing lemma and lemma 4.2, there exists a ¢ € G*? with

A-g= Ay + asuch that
Hoz||W1,2 S Cl ||F;(HL2 + CQ S C/

thus « € W12,

As for || ||z, note that by Sobolev multiplication g - 9 is still of W%? = L2, to
avoid the abused using of notations, which will still be denoted by v, hence by (25),
we have

Q-

0= D= D+ O
hence again by Sobolev multiplication theorem, we have

P = -0 e Whkg,) = 1(8,)

by elliptic estimation and lemma 4.1, we have

lellwee < € (| Bh,¢] , +IIele) <
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« Fork = 2, inorder to establish an estimation on || &[22 we need to study HF:{ HWLQ
by gauge fixing lemma, which entails to study HDF:{ HL2.

We still use V4 for the induced spin connection on End($,) D su($,). By defi-
nition, we have

2
DFX =Vau() =Vyu (l/J ®P* — %Id)

= (Vap) 9" + ¢ @ Vay™ — (ZWAM’ qp)) 1d

i=1
since 1) € W2 by applying triangle inequality we have
IDFL[ 2 < ClIVaYllze - [[9]]z2 < C7
thus Fif € W2 by gauge fixing lemma we can prove a € W22 for some A - g =

A0+Oé.

Again, by Sobolev multiplication we can show that
-

lﬂ(ﬂ/} =T 5 e Wh2(8,)

by applying elliptic estimation again, we have

|Y|lw22 < C <HlﬁzowH + ‘WHL?) <C

w2

- The proof for k = 3 is similar, just compute D*F{ and by applying our previously
results.

- Now, we can start the induction, suppose the result holds till to some & > 4, by
Sobolev multiplication we have

Ff = p(p) e Wk ( /\2+ T"M 2 iR)

hence by gauge fixing lemma, there exits some g € G*%2 provides A+ g = Ay + «
such that
||Oé||Wk+1,2 < HFXHW’CQ +C0y, <

The same as before, by applying elliptic estimation, we conclude that (¢, ) €

Wk+1’2.
That ends the proof. &

As was stated in the beginning strategy, we have

Lemma 4.4. The moduli space M2 = K5’2/g6’2 is compact.
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As the consequence of theorem 4.1 (3) and lemma 4.3, we obtained

Theorem 4.3. Every solution (¢, A) € K2 can be gauge transformed to a smooth solution
(¥, A) - g € SW0) for some g € G%2. Moreover, Mgy is compact under C*-topology.

Proof. Just show that for each K>2-solution (¢, A) there exists a g € G%? such that
(¢, @) is in W*2 for all k > 0 (be careful that, different from lemma 4.3, where g € G*2
depends on k), where A - g = A + o

By lemma 4.3, we know that if (¢, A) is a K32 solution, ¢ is in W2 for all k >
0, hence 9 is smooth. And by Sobolev multiplication HFXHWM = || () ||z is also
bounded below for all k& > 0, hence by lemma 42 Fy = Ff + F; is smooth. Notice that
if we denote A - g = Ay + a for some g € G%? we have

FA = FA-g = FAO +dOé
don’t forget dav = 0, we have
(d+5)0z=FA—FAO = du

thus dav is smooth, hence so is a.

To show Mgy is smooth under C'* topology, it suffices to show that for any sequence
(¥n, Ap) in Mgy, there exists a subsequence (1, , Ay, ) converges in W*2-norm for all
k> 0.

Since (¢, Ay,) is bounded below in W92 —norm, there exists a subsequence (,,,, Ay,)
which converges in W52 —norm after applying a gauge transformation in G52, And since
(Un;, Ap,) is also in W72 we can choose a subsequence which converges in W52-norm
(after applying a gauge transformation in G™?), keep doing this process, and by the choice
axiom we can pick the diagonal subsequence which is converge in any W2 norm. &

4.2 Smoothness

As was stated at the beginning of this section, if we can show that SW~1(0) is smooth,
then at least MZJ; is a smooth manifold. However, although SW may not intersect
transversally with 0, we can percurb it by a small constant n € W2 (Ai T*M ®iR)
so that good thing happens. In order to do so, we need to establish an co—dimensional
Thom-Smale theorem.

4.2.1 Fredholm Theory

Let’s start from the general Fredholm theory. Let X, Y be two co—dimensional Ba-
nach manifolds, ' : X — Y is a smooth map

Definition 4.1 (Fredholm map). Let y = F(x) € Y, the smooth map F' is said to be
Fredholm it (dF);; T, X — T,Y is a Frcholm map for all z, that is

(i) dimker(dF), < oo
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(i) dim (Y /Im(dF'),) < oo, that is its cokernel is of finite dimensional.
(iii)) Im(dF), is closed * in Y.

If X is connected, there is a well-defined index of a Fredholm map, which is defined by
Ind F := dim ker(dF), — dim coker (dF),
Y )
A very important class of Fredholm maps is:
Theorem 4.4. Every elliptic operator of order ¢
D WH"(M; E) — WM E)

is a Fredholm operator. Hence in particular, the Dirac operator I or ID 4 are Fredholm, and che
Fredholm index equals to the index as elliptic operators.

In what follows, we always assume X, Y are connected.
The Fredholm maps in co—dimensional differential topology have a lot of good prop-
erties as the smooth maps in finite-dimensional topology. For example, the Sard theorem.

Theorem 4.5 (Sard-Smale-Kuranishi). Assume F': X — Y is a Fredholm map.

(i) If 0 € Y is a regular value, i.e. (dF'), is surjective for all x such that F'(x) = 0, then
F~1(0) C X is a smooth submanifold of dimension Ind F.
(i) If X, Y are both paracompact, then the set of regular values of F'is a subset in Y of second

category, in particular dense.

If the Fredholm map F' has index 0 and is also proper, then for a regular value 0,
F~1(0) is compact O-dimensional manifold, i.c. finite points. It allows us to define what
is a Zy—mapping degree.

Lemma4.5.  (a) Forany two regular values y1,y2 € Y of F, we have the modulo 2 cardinality
#F_l(yg) = #F_l(yg) mod 2

this Zio—ineger is called the Ziy—degree of F', denoted by deg,, F'.

(b) For two homotopic Fredholm maps Fy, Fy, ie. they were joined by a Fredholm path in
C>®(X;Y), then
deg, Iy = deg, Fy

A more generalized notion of regular values is the transversality.

2Tn fact, (i) & (ii) implies (iii).
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Definition 4.2 (Transversality). Let Z C Y be a smooth finite dimensional submanifold, a
map F': X — Y is said to be transverse to Z if for any z € Z and x € F~(2), we have

Im(dF), +T,Z =T.Y
denoted by F'th Z. &

Of course, if every 2z € Z is a regular value of F' then F' M Z, but the reverse side is
not necessarily true. Like in the finite dimensional differential topology, we have

Theorem 4.6. Suppose F' : X — Y is Fredholm, Z C Y is a finite dimensional submanifold
and F th Z, then F~(Z) is a smooth submanifold in X with the dimension

dim Fﬁl(Z) =IndF+dimZ

Next important question is to generalize the Thom-Smale theorem: For a given sub-
manifold Z C Y, are the Fredholm maps such that ' th Z generic enough?

To answer this question, we consider a family of Fredholm maps { £}, } parameterized
in a connected Banach space W, i.e. a Fredholm map

F: XxW-—Y

such that for each parameter w € W, F(z, w) := F,, is Fredholm. An analogously result
of Thom-Smale theorem reads:

Theorem4.7. Lety € Y be aregular value of F, then there is subset Wy C W of second category
(hence dense) such that y is a regular value of F,, for each wy € Wy,

That is to say, if for a Fredholm map F' = F,, the value y € Y may fail to be a
regular value for F, but we can always perturb F slightly in the parameter space W so that
the perturbed F,, is very close to F and regular at y.

Now, if we assume in addition that F), is proper for each w, and Ind F' = 0, we can
compute the Zy-mapping degree of F' = F,,,, at any value y by

deg, F' := deg, F\, = #F,*(y) mod 2

where the F, was chose to be perturbed to be regular at y. But there is a natural question:
what if one chooses a different perturbation F,?

Lemma 4.6. Let F and F,;, = F be defined as above. If W' is connected, for any two wy, we €
W such thaty € Y is a regular of F,, i = 1,2, then

degy Fuy = degy Fu,

Proof. Since W is connected, we can choose a path 7 : [0, 1] — W joining them, i.c.
7(0) = wy, ¥(1) = wa. Then for each (), Flx xfyt)} = F(x,7(t)) defines a homotopy
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between Fyy, and F,,, then by homotopic invariance of Zg-degree (cf. Lemma 4.5 (b)), the
desired result yields. &

Next, we wish to give an orientation on Fﬁl(y) (y is regular) so that we can define
a Z—valued degree. Recall that an n-dimensional manifold M is orientated if and only if
the determinant line bundle A" T'M is trivial. Hence for an index d Fredholm map F', we
can also study the A TF~1(y) to give an orientation of F~(y).

To do this, notice that for z € F~*(y), the tangent space is actually

T.F ' (y) = ker(dF),
However, in practice, it’s convenient for us to define:

Definition 4.3. The determinant line bundle determined by a Fredholm map F' : X — Y is

top top
dec o= ] ( N\ ker(dF), @ /\cokcr(dF)x) — X

zeX

Lemma 4.7. The line bundle det F' defined in definition 4.3 is indeed a locally trivial real line
bundle over X.

A proof can be found in [15, Appendix A.2.2].

Hence we see that if det F'is a trivial line bundle, then for any regular value y, F~*(y)
is an oriented submanifold. In particular, it X, Y are Banach spaces and F is a linear Fred-
holm map, then det F is obviously trivial.

Now, for the perturbed case F : X x W — Y| where W is a connected Banach
manifold, and let £}, = F(z,w). Notice that for two parameters wy, ws € W, there
exists a path y(t) joining them, thus F(x,v(¢)) defines a homotopy between F,, and

F,. Moreover, we have
Lemma 4.8. det Fyy, is trivial if and only if det F, is trivial.

With this in mind, we can define what is the Z—valued mapping degree of a Fredholm
map F: X — W. Recall that if F' is proper and Ind F = 0 then F~!(y) is just a finite
set for y regular. If det F' is in additional trivial, then an orientation in F~!(y) means
there is a well-defined sign +1 on each element in F~1(y), we define deg F' to be the
signed counting of its cardinality.

If y is not a regular value, then we can choose a perturbation 7 : X x W — Y
with F' = F,, for some wy € W, then by Thom-Smale theorem 4.7, we can choose a
generic w so that y is a regular value of F,,. Now, if we assume in additional that such
a perturbation was chose such that det F, is trivial for all w € W, then F;(y) is an
oriented 0-dimensional compact manifold, i.e. finitely many points with a sign, we define

deg F' := deg F,
By lemma 4.8 we know that the result doesn’t depend on the choice of the perturbation

E,.

Like lemma 4.5, we have

Lemma 4.9. The Z-valued mapping degree deg F' is independent of the choice of regular value
y € Y and it is homotopic invariant.
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4.2.2 Transversa]ity and Perturbed Smoothness

One cannot expect neither 0 is a regular valued of SW nor SW is Fredholm”'. Hence
we need a bit more work to apply the Fredholm theory.

Indeed, there is a classical method to deal with this problem, let me introduce it here.

Let p : C — V be a smooth map between Hilbert manifolds (where C is affine and
V is linear in our situation) which may be not Fredholm, moreover, C and V both endows
with a G-action and p is assumed to be G—equivariant. Let 0 € V be a fixed point of the
G —action, but it might be not a regular value of 1. We wish to study the smoothness of
the quotient space u=1(0)/G := M, the so-called moduli space. However, there are several
problems which may cause the bad behaviors of M.

- 1~1(0) may not be smooth, since 0 may not be a regular value of p.
- Even if 171(0) is smooth, G-action on p~*(0) may not be free *.

- Even if G acts freely on 71(0), M still may fail to be smooth, since pp=1(0) may of

infinite dimensional (g may be not Fredholm).

- One may very hard to find a slice S, at each point z € p~*(0), so that those slices
provide the coordinate charts on M.

Then, we aim to discuss a parameterized smoothness with the following objectives:

(i) Introduce a parameter space W and define a perturbed map F : C x W — V),
such that g = F(-,n9) for some g € W, and 0 is a regular value of F (this F is
not necessarily Fredholm either).

(ii) For genericn € W, p,, = F(-,n) is regular at 0 so that u;l(O) is smooth.

(iii) For each & € p;*(0) there is a slice S, so that one can deduce M, := p;(0)/G is
smooth.

(iv) For different 77 and 1, the moduli spaces M), and M,,, are cobordant equivalent.

The most difficult part is obtaining the “generic property” in (ii), our method in here
is to use an elliptic complex. Here are the detailed approaches.

(1) Foreachzx € ,u,;l(()) C C, consider the following deformation complex:

R. (dl“?)z
0 — Lie(g) > T, ——V —0

where R, (§) := £(x) means evaluation at z of the fundamental vector field deter-

mined by £ € Lic(G). This is indeed a complex due to the equivariancy and 0 is a
fixed point:

(dpn), §(x) = & (i (2)) = 0

' Actually, it is a Fredholm part plus a compact part.

2Recall that if M is compact and of finite dimensional, then for every free compact Lie group G-action,
M /G is a smooth manifold. Indeed, for any orbit G - x € M /G, by Kozul's slice theorem [16], there exists a
G—equivariant tubular neighborhood V, of the orbit G - x, such that V is equivariant]y diﬁéomorphic to
a tubular neighborhood of the zero section of the normal bundle of G - x, thus such a V, forms a slice in M,
hence M /G is a smooth manifold (with coordinates provided by these V).
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(2) Notice that the ker (dpy), is precisely Ty, ' (0), hence the Ist cohomology group
of this complex is

H' = T,M,
(3) Since C,V are Hilbert manifolds, we can consider the following map:
D! := (R}, (du,),) : T,C — Lie(G) &V
where R} : T,C — Lie(G) is the dual map of R,.
We shall notice that ker R = (Im R,)*, hence

ker DY = ker R}, N ker((dpy)s)
= (Im R,)* N Ty, (0) (29)
~ '~ T,M,

(4) Also notice that Im R = (ker Ry)™, hence if G acts freely on g1, 1(0) then Ry is
also surjective. Under this assumption, we see that 0 is a regular value of g, if and
only if D7 is also surjective.

(5) Thus if we can show in additional that D is a Fredholm operator, then for generic
n € W, we have p1,(0) is smooth.

To sum up, we obtain the following:
Theorem 4.8. [f the perturbation F : C x W — V of pu satisfying the following:

(a) 0is a regular value of F.

(b) G acts freely on p1, (0) for eachn.

(c) Foreachmand x € /L,;l (0), there exists a G-slice S,.
(d) D2 is a Fredholm operator of index d for each n).

Then for generic ) € W, the moduli space M, is a smooth manifold of dimension d, and if W' is

connected, two different perturbed moduli spaces are cobordant.

Now, let’s deal with the Seiberg-Witten map. For simplicity, we shall only consider
the irreducible solutions Cij? so that theorem 4.8 (b) will hold.

Definition 4.4. The perturbed Seiberg-Witten map SW is
ez x w2 ( N rMe iR) — V42 = W28 @ W2 ( N TMe iR)
rr + - +
(0, Am) v (P, B = plw) = n)

Lemma 4.10. 0 is a regular value of SW, hence it satisfies Theorem 4.8 (a).
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Proof. Notice that

oSW

2 ) 2 .
pry g = —ld s W (A, TMeR) — w2 (N T'MeR)

is surjective, to show d(y, 4, SW is surjective for SW(1p, A, n) = 0 it suffices to show

T := prld(¢7A)SWn : T(%A)C?’z — W4’2($_)

wmrr

is surjective for each . It suffices to show (ImT')* is zero.

By (28), we know that

T(V,a) = DP,0 + %

Now, if ¢ € (ImT')* which is non-zero, then we have

<so, ID+\P+%> -0 (30)

for all (¥, «r) € T(w’A)C5’2 In particular, lec & = 0, we have

i

0= <JD§\1/, g0> - <n1f,w;go> — P =0 (31)
Similarly, if we let U = 0 in (30), then we have for all & € W52 (T*M ®iR):
(o=, ) =0 (32)

Since 1) satisfies lthb = 0, by the rigidity property », there exists an open subset
U C M such that 9 does not vanish on U. By the property of spin representation and
(32), for any o supports on U, one always have

(a-v,0) =0

hence ¢ almost vanishes on U, but by (31), applying again the rigidity property on ¢, we
conclude that p =0on M. &

Lemma 4.11. For each ) € W*2, and each (¢, A) € SW,(0), there exits a slice defined by
(@Z), A) + kel‘ Rikw7A)

thus the perturbed map SW satisfies Theorem 4.8 (c).

The Dirac operators are somehow a generalization of the Cauchy-Riemann operators, so the spinor field

1 with lﬁ@b = 0 should satisfy the rigidity property as the holomorphic functions.
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Proof. Note that %

)= (10, A) + ker Rfy 4 = (10, A) + (Im Riya)) ™

and since C - is affine and G%2 acts freely on it, it suffices to check
T, 4)S(w,a) M Im Ry 1
and it is indeed the case. &

Lemma 4.12. The operator D(wA (Rw Ays A, ) SW, ) is an elliptic operator for each n €

W42 hence Theorem 4.8 (d) is also satisfied. Moreover, its index is

_ (L) = 2x(M) — 3sgn (M)
(®,4) 4

Ind D7

where L is the determinant line bundle of the Spin® structure on M.
Proof. By definition we can check that the deformation complex

Ry, a) d(p,4)SWn

> T(¢, C5 2

wmrr

0 — Lie (G%?)

C%2(M;iR) W2 ($, @ (AN T * M @iR)) W2

is elliptic, hence D?w,A) (R(w Ay sy, 4)SW, ) is elliptic, in particular Fredholm.

By a straightforward computation, we have

- . N ; n .
therefore, we can write D(w,A) as

pr = (Pa +B:=Dy+B
(. 4) dt +6 Y

where B is a zeroth order operator. We can define Dy + Bt a homotopy between DZZ) A)

and Dy, hence we have

Ind DY, , = Ind Dy = Ind P + Ind (d* + 8)

(,4)

Z4By a direct compuration, we find that for any £ € Lie(G) = C*°(M;iR):

(e_tgw, A+ Qe_tgtetgdf)
t=0

Ry 1§ =E(W, A) = P

> Y2 —— 0
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By Atiyah—Singer index theorem 2.9 we have:

2 — Qo
h’ld lpl‘ — Cl(ﬁ) SSEH(M>

and by examp]e 2.6 we have
X(M) — sgn(M)
2

where by is the dimension of self-dual parts of H2(M;R). &
Hence by theorem 4.8 we have:

Theorem 4.9. For genericp € W2 ( /\i T*M ® iR), the perturbed moduli space
My = {(¥, A) € C*|SW(¥, A,n) = 0,4 # 0}

is smooth of dimension

Ind(d++5):b1—bo—b;:

ci(£) = 2x(M) — 3sgn (M)
4

However, when we only talk about the irreducible solutions, ./\/l%”’ loses the compact-

dim M =

ness, to deal with this prob]em, we need to add a topo]ogical restrain:

Theorem 4.10. If by > 1, then for generic n € W2, the solutions of SW, (1, A) = 0 are
all irreducible, hence under this assumption, for generic 1, the moduli space M,, is smooth and

C ompac [

Proof. Indeed, pick a reference point Ay € A(L), consider
_ 4,2 2 * .
Q= Fi, +1md* c W (\ T"M @ iR)

This is a subspace of codimension by > 1, in particular Q¢ is dense. Now if n € Q°, we

see that any solutions of SW,, (1), A) = 0 one never has ) = 0. &

4.3 Orientation

Now, we always assume by > 1. As was discussed in § 4.2.1, we hope to establish a
determinant line bundle of T'M,), by checking the triviality of this bundle we can detect
the orientation of./\/ln.

From (29) we know that it suffices to check the det D?w#l)' Due to lemma 4.8, we
know that it suffices to check the triviality of det Dy. In fact, we have

det Dy = det lD} ® det(dt + 6)
since both lDZ and d* + § are linear, we know that det Dy is trivial. To sum up, we have
showed

Theorem 4.11. Ifby > 1, then for generic n € W2, the percurbed Seiberg-Witten moduli space
M, is a smooth compact oriented manifold. For two different perturbations 1y, m2, the moduli
spaces M, and M., are cobordant equivalent.
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4.4 Seiberg-Witten Invariants

Now, we can define a numerical invariant of 4-manifold M, the celebrated Seiberg-
Witten invariant.
Pick m € M, consider the based gauge group:

Go :={g € Glg(m) =1}

then we have a short exact sequence of Lie groups
1 —Gy—G-"U(l) —1

where ev,, means evaluation at m.
The quotient space

M, = SW,;7(0)/Go

is called the framed moduli space. Tt equips with a free U(1)—action, and Mn/U(l) =M,
Which is to say, ./\;117 is a U(1)—bundle over M,, let’s denote the 1st Chern class of this
bundle by w € H*(M,,, Z).

Let d = dimM,, and S(M) the affine space of Spin® structures on M, then by

theorem 4.11, there is a well-defined numerical invariant:

Definition 4.5 (Seiberg-Witten Invariant). The Seiberg-Witten invariant sw of M is a
function sw : S(M) — Z, defined by

/ w% if dis even
sw(o) =< Jm,
0 ifdis odd

Parc I1I: Applications

5 Spin Geometry on Complex Manifolds

5.1 Spinc Structure Induced by an Almost Complex Structure

5.2 Dirac Operators on Complex Manifolds

6 Applications to Kihler Surfaces



Scibcrg—Wittcn Gauge rchory 60

Reference

Andriy Haydys. Introduction to gauge theory. arXiv preprine arXiv:1910.10436, 2019.

John Morgan. The Seiberg-Witten equations and applications to the topology of smooth four-manifolds,
volume 44. Princeton University Press, 1996.

John Moore. Lectures on Seiberg-Witten invariants. Springer, 2009.

Simon Kirwan Donaldson and Peter Kronheimer. The geometry of four-manifolds. Oxford uni-
versity press, 1997.

Robert Friedman and John Morgan. Smooth four-manifolds and complex surfaces, volume 27.
Springer Science & Business Media, 2013.

Blaine Lawson and Marie-Louise Michelsohn. Spin Geometry (PMS-38), Volume 38, volume 20.

Princeton university press, 2016.

John Milnor and James Stasheff. Characteristic classes. Number 76. Princeton university press,
1974.

Glenys Luke and Alexander Mishchenko.  Vector bundles and their applications, volume 447.
Springer Science & Business Media, 2013.

Jean-Pierre Schneiders. Introduction to characteristic classes and index theory. 2000.

Edgar Brown Jr. The cohomology of BSO(n) and BO(n) with integer coefficients. In Proc.
Am. Math. Soc, volume 85, pages 283-288, 1982.

Ralph Cohen. Bundles, Homotopy, and Manifolds, 2023.

Riccardo Benedetti and Paolo Lisca. Framing 3-manifolds with bare hands. L’Enseignement
Mathematique, 64(3):395-413, 2019.

Dietmar Salamon. Spin Geomerry and Siebmg—W’itren Invariants. ETH, 2000.

Weiping Zhang. Lectures on Chern-Weil theory and Witten deformations, volume 4. World Scien-
cific, 2001,

Dusa McDuff, Dietmar Salamon, et al. J-holomorphic curves and quantum cohomology, volume 6.
Citeseer, 1994.

Jean-Louis Koszul. Sur certains groupes de transformations de lie. In Colloque international du
Centre National de la Recherche Scientifique, volume 52, pages 137-141, 1953.


https://web.math.ucsb.edu/~moore/seibergwittenrev2edition.pdf
https://aareyanmanzoor.github.io/assets/books/characteristic-classes.pdf
https://link.springer.com/book/10.1007/978-1-4757-6923-4
https://softbank.iust.ac.ir/MathBooks/S/Schneiders%20-%20Introduction%20to%20Characteristic%20Classes%20and%20Index%20Theory.pdf
https://math.stanford.edu/~ralph/book.pdf
https://people.math.ethz.ch/%7Esalamon/PREPRINTS/witsei.pdf
https://detail.tmall.com/item.htm?abbucket=18&id=733395179214&ns=1&spm=a21n57.1.item.3.709e523cDq5tCq

	Abstract
	Part I: Spin Geometry
	Clifford Algebras and Spin Groups
	Clifford Algebras and Their Representations
	Clifford Algebras and Their Complexifications
	Representations and Clifford Modules

	Spin Groups and Spin Representations
	Spinc Groups
	The Quaternion Algebra H

	Spin Geometry and Dirac Operators
	Spin Structures and Spinor Bundles
	Spinc Structures
	Structures on Spinor Bundles
	Bundles of Clifford Module
	Connections on Spinor Bundles
	Dirac Bundles and Dirac Operators

	Properties of Dirac Operators
	Formal Self-Adjointness
	Weitzenböck Formula
	Atiyah-Singer Index Theorem


	Part II: Seiberg-Witten Gauge Theory
	Seiberg-Witten Equations
	Definitions and Seiberg-Witten Maps
	Gauge Group Actions

	Seiberg-Witten Moduli Spaces
	Compactness of MSW
	Sobolev Completions
	Proof of the Compactness

	Smoothness
	Fredholm Theory
	Transversality and Perturbed Smoothness

	Orientation
	Seiberg-Witten Invariants

	Part III: Applications
	Spin Geometry on Complex Manifolds
	Spinc Structure Induced by an Almost Complex Structure
	Dirac Operators on Complex Manifolds

	Applications to Kähler Surfaces
	Reference

