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Abstract

This is a learning note for Seiberg-Witten gauge theory. The main part of this note will include the
classical theory of Seiberg-Witten invariants and their applications in the topology of smooth 3,4-manifolds.
For some excellent learning literatures, I’d like to refer to [1–3]. This note will be innovated inconstantly, the
later topics will contain the theory and applications of generalised Seiberg-Witten equations.

In order to define the Seiberg-Witten equations, we need to establish what is a Spin structure at first,
since Seiberg-Witten equations describe the existence of some certain spinor fields ψ and some connections
A on a line bundle associated to a chosen Spinc structure.

Like other gauge theories (Yang-Mills, Chern-Simons, etc.), the solutions of Seiberg-Witten equations
are gauge invariant under a gauge group G action, the speciality in here is that the gauge group G is Abelian
(a group of U(1)−valued smooth functions), that’s why the Seiberg-Witten gauge theory is also called an
Abelian gauge theory. Then it is natural to discuss the Seiberg-Witten moduli spaceMSW , that is the space of
solutions modulo the gauge equivalency.

However, the study of the moduli spaces is a hard part in gauge theory, since the moduli spaces maybe
not compact, not smooth or hard to give an orientation. However, different from other gauge theories
(especially for Yang-Mills), the Seiberg-Witten moduli spaces have a lot of good properties due to the less
non-linearity of the Seiberg-Witten equations, which are 1st order non-linear elliptic PDEs.

The main good properties of the Seiberg-Witten moduli spaceMSW are: it is compact, it is smooth
under a small perturbation, it is orientated so that we can do intersections (and hencewe can define numerical
invariants, namely the celebrated Seiberg-Witten invariants).

The proof of these properties are standard arguments in geometrical analysis and infinite-dimensional
differential topology (mainly the Fredholm theory), and these techniques are frequently appeared in many
other geometric theories which involve the analysis of elliptic PDEs (such as Floer homology, J−holomorphic
curves and Gromov invariants, Donaldson theory, etc.). At this point, the proof of these properties will be
a core part through this note, because they are toy models which can help us to understand more difficult
topics.

Since the analytic nature of Seiberg-Witten gauge theory is much easier than Yang-Mills, and it can
study the topology of low-dimensional manifolds as well, it makes learning Seiberg-Witten theory a good
start point for those who want to know the topological applications of gauge theory. I will write some of its
applications in the topology of Kähler surfaces. For more applications of gauge theory to complex geometry
and 4−manifolds, I heard that [2, 4, 5] are excellent references.
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Part I: Spin Geometry

1 Clifford Algebras and Spin Groups

Let’s first start with some algebraic preliminaries, a good reference of this part can be
found in [2, 6]. A little preliminary knowledge about quaternion is expected, they can be
found in Appendix 1.A.

The notion of Clifford algebras arises from the algebraic presentations of rotations.
For example (cf. Proposition 1.1), the rotations inR2 can be presented by multiplica-

tions of unit complex numbers; the rotations in R3 can be presented by unit quaternions
via v 7→ hvh̄, where h ∈ H with |h| = 1, and v ∈ R3 is identified with ImH = R3;
as for R4 the presentations of rotations need 2 unit quaternions via h 7→ q+hq−, where
q± ∈ U(1,H), and h ∈ R4 is identified with H.

We shall see later that these C,H or H ⊕ H are actually the irreducible representa-
tion spaces of the Clifford algebras associated to the underlying Euclidean spaces. Their
elements are called spinors, which can be vaguely understood, as was implied by its literally
meaning, the generators of rotations.

1.1 Clifford Algebras and Their Representations

1.1.1 Clifford Algebras and Their Complexifications

Let (V, 〈·, ·〉) be a real n−dimensional vector space equipped with an inner product.

Definition 1.1 (Clifford Algebras). The Clifford algebra C`(V ) of V is defined by:

C`(V ) :=
TV

〈v ⊗ v − |v|2| v ∈ V 〉

where TV is the tensor algebra of V , |v|2 means 〈v, v〉 scalar products with the identity
1 ∈ TV . ♣

The multiplication in C`(V ) is denoted by a dot ·. Briefly speaking, the Clifford
algebra of V is just an algebra generated by elements in V subordinate to the relation
v · v = −|v|2. Also, notice that for any x, y ∈ V , we have

(x+ y)2 := (x+ y) · (x+ y) = −
(
|x|2 + |y|2

)
+ x · y + y · x

= −〈x+ y, x+ y〉 = −
(
|x|2 + |y|2

)
− 2〈x, y〉

we see that
x · y + y · x = −2〈x, y〉 (1)

In particular one can deduce that
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Lemma 1.1. If x1, ..., xn is an orthonormal basis of V , then C`(V ) is an algebra generated by
1, x1, ..., xn subordinate to the relation:{

x2i = −1,
xi · xj = xj · xi, i 6= j

⇐⇒ xixj + xjxi = −2δij

Notice that the Clifford algebras are algebras over R, thus it is convenient to define
its complexification by tensor product C`(V )⊗RC. Now let’s compute some examples by
lemma 1.1.

Example 1.1. (1) If V = R, then C`(R) = R[x]/〈x2 + 1〉, which is C, hence the
complexification algebra is C⊗R C ∼= C2.1

(2) If V = R2, then C`(R2) is generated by 1, x, y, satisfying

x2 = y2 = −1, xy = −yx

note that if we denoted by i, j, k the imaginary unit of the quaternions H, then by
letting x = i, y = j, and xy = k, then we find that C`(R2) ∼= H.
To compute the complexification algebra, we recall that each quaternion has amatrix
presentation by 2× 2 complex matrices (see Appendix 1.A), henceH can be viewed
as a subalgebra of End(C⊕ C), therefore

C`(R2)⊗R C ∼= H⊗R C ∼= End(C⊕ C)

(3) If V = R3, then C`(R3) is generated by 1, x, y, z satisfying{
x2 = y2 = z2 = −1
xy = −yx, xz = −zx, yz = −zy

(2)

We claim that there is an R−algebra isomorphism C`(R3) ∼= H⊕H.
One should be careful that an element (h1, h2) ∈ H⊕H is identified with the diag-

onal matrix
(
h1 0
0 h2

)
, hence the multiplication is defined by the matrix multipli-

cation after a diagonal embedding. Therefore, as anR−algebra,H⊕H is generated
by the matrices

e1 =

(
−k

k

)
, e2 =

(
−j

j

)
, e3 =

(
−i

i

)
and the generators also satisfy the relation (2).

1Note that C as an R−algebra is actually R⊕R, hence the complexification is simply by replacing R to
C in each component.
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With this in mind, we can define the isomorphism by expanding x 7→ e1, y 7→ e2
and z 7→ e3 . 2

By the computation in 1.1(2), it is clearly that the complexification algebra is simply
End(C2)⊕ End(C2).

(4) By the same method, one can check that C`(R4) ∼= End(H⊕H) (the multiplication
in the later algebra is the matrix multiplication). Indeed, the algebra End(H ⊕ H)
is generated by

e1 =

(
−1

1

)
, e2 =

(
i

i

)
, e3 =

(
j

j

)
, e4 =

(
k

k

)
ε1 =

(
1

1

)
, ε2 =

(
−i

i

)
, ε3 =

(
−j

j

)
, ε4 =

(
−k

k

) (3)

the isomorphism is defined by identifying x1 ... x4 with e1 ... e4 and x2x3x4 ...
x1x2x3 with ε1 ... ε4 correspondingly.

Consequently, the complexified Clifford algebra is just by replacing each entry of
A ∈ End(H⊕H) to a 2× 2 complex matrix, which is End(C4).

(5) In fact, the Clifford algebras have a periodicity 8:

C`
(
Rk+8

) ∼= C`
(
Rk
)

therefore it’s enough to calculate all Clifford algebras for k ≤ 8. The computa-
tions and the proof of the above periodicity can be found in [6, §1.4], the list of the
classification can be found in table 1. ♣

Remark 1.1. As was illustrated in Example 1.1 (4), we can associate each vector x ∈ R4 with
a 4× 4 complex matrix presentation. That is by replacing i, j, k of those ei’s in (3) to some
2× 2 complex matrices defined in (13). ♣

1.1.2 Representations and Clifford Modules

Definition 1.2 (Representation). A (complex) representation of a Clifford algebra C`(V )
is an R−algebra homomorphism:

ρ : C`(V ) −→ EndC(W )

whereW is a C−linear space, and EndC(W ) is viewed as an R−algebra. ♣
2On the reverse side, the isomorphism is defined by expanding

(1, 0) 7→ 1 + xyz

2
, (0, 1) 7→ 1− xyz

2
, (i, 0) 7→ xy − z

2
, (0, i) 7→ xy + z

2

(j, 0) 7→ xz − y
2

, (0, j) 7→ xz + y

2
, (k, 0) 7→ yz − x

2
, (0, k) 7→ yz + x

2
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Remark 1.2. If W is a representation space of a Clifford algebra C`(V ), definition 1.2 is
equivalent to say thatW endows with an V−action, called the Clifford multiplication:

C` : V ⊗W −→ W, v ⊗ w 7→ v · w

which satisfying
v · (v · w) = −|v|2w

The representation spaceW of C`(V ) is also called a Clifford module. ♣
Here are several examples of Clifford modules.

Example 1.2. (1) If W is a quaternionic vector space, in particular it is also a vector
space over C, then W is a C`(R3)−module. Because for a q ∈ R3 ∼= ImH one
always has q2 = −|q|2.
In particularH is aC`(R3)−module, theCliffordmultiplication is simply the quater-
nion multiplication.

As a notation convention, we denoted by /S the quaternion H when it’s regarded as
a vector space over C, and End(/S) stands for the complex endomorphisms of /S.

(2) IfW1,W2 are two quaternionic vector spaces, thenW1⊕W2 is a C`(R4)−module.
Here the Clifford multiplication is defined by ( identifying R4 with H)

C` : R4 ⊗ (W1 ⊕W2) −→ W1 ⊕W2

h⊗ (w1, w2) 7→ (w1, w2)

(
0 −h̄
h 0

)
(4)

since one can easily check that(
−h̄

h

)2

= −|h|2
(
1

1

)
In particular, H ⊕ H is a C`(R4)−module, which is denoted by /S+ ⊕ /S− by the
previously convention.

(3) For any Euclidean space V , the complexified exterior algebra∧
V ∗
C :=

(⊕
k≥0

k∧
V ∗

)
⊗R C

is a C`(V )−module. The Clifford multiplication is given by 3

C` : v ⊗ ω 7→ ιvω − 〈v, ·〉 ∧ ω (5)
3By identifying V ∼= V ∗ via Euclidean inner product,

∧
VC is also a Cℓ(V )−module, where the Clifford

multiplication can also be write by (5): v ·w := ιvw − v ∧w, where w ∈
∧
VC. One should notice that, if

we write w = w1 ∧ · · · ∧ wk , the contraction ιvw is actually

ιv(w1 ∧ · · · ∧ wk) :=
k∑
i=1

(−1)i−1〈v, wi〉w1 ∧ · · · ∧ ŵi ∧ · · · ∧ wk
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where v ∈ V , ω ∈
∧
V ∗
C . In fact,

v · (v · ω) = ιv(ιvω − 〈v, ·〉 ∧ ω)− 〈v, ·〉 ∧ (ιvω − 〈v, ·〉 ∧ ω)
= −ιv(〈v, ·〉 ∧ ω) + 〈v, ·〉 ∧ ιvω
= −|v|2ω

.♣

Remark 1.3. As R−linear vector spaces,
∧
V =

⊕
k≥0

∧k V is isomorphic to C`(V ) by
expanding the following map:

σ :
k∧
V −→ C`(V )

with σ(λ · v1 ∧ · · · ∧ vk) = λ · v1 · · · · · vk . However, this isomorphism is not an algebra
isomorphism.

Moreover, ifW is a Clifford module, then the Clifford action onW can also be ex-
tended to a linear

∧
V -action. ♣

Recall that from representation theory, a representation ρ : C`(V ) −→ EndC(W )
is called irreducible, ifW has no non-trivial ρ−invariant subspaces. Correspondingly, the
irreducible representation spaceW is also called an irreducible Clifford module. It is called
reducible if it is not irreducible. It is called completely reducible, ifW can be decomposed
into direct sums of 1-dimensional irreducible Clifford modules.

Here are several examples of irreducible Clifford modules.

Example 1.3. (1) The complex vector space /S = H is an irreducible C`(R3)−module.
To see this, as was stated in Example 1.2 (1), the R3 ∼= ImH action on /S is given
by h 7→ qh, where q = q1i + q2j + q3k ∈ R3, h ∈ /S. By the matrix presen-
tation of quaternion (cf. Appendix 1.A equation (14)), we can write this Clifford
multiplication as:

ϕ :R3 ∼= ImH −→ End(/S)

q 7→
( √

−1q3 −q1 +
√
−1q2

q1 +
√
−1q2 −

√
−1q3

)
(6)

where the last matrix has two distinct eigenvalues ±
√
−1|q| for each q. Then by

a theorem in representation theory, a 2-dimensional representation is irreducible if and
only if there are no common eigenvalues, which ends the proof.

(2) The complex vector space /S+ ⊕ /S− is an irreducible C`(R4)−module.
In fact, as was shown in (4), the Clifford multiplication can be viewed as:

φ : R4 ∼= H −→ End(/S+ ⊕ /S−), h 7→
(
0 −h̄
h 0

)
(7)
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where h,−h̄ are presented by 2 × 2 complex matrices (cf. Appendix 1.A), we can
compute the last matrix also has two distinct eigenvalues ±

√
−1|h| for each h ∈

R4 ∼= H, and each eigenvalue has a eigen-subspace of dimension 2, namely E±
h .

Hence /S+ ⊕ /S− is reducible if and only if E
±
h are common eigen-subspaces for all

h ∈ H, which if and only if±
√
−1|h| are common eigenvalues for all h ∈ H, which

is not the case. Therefore /S+ ⊕ /S− is an irreducible C`(R4)−module. ♣

Each representation of C`(V ) can be extended to a representation of its complexifi-
cation C`(V )⊗R C.

Example 1.4. (1) The representation ofC`(R3)⊗RC on /S can be obtained by expanding
ϕ to

ϕC : ImH⊗R C −→ End(/S)

just by replacing each qi ∈ R appeared in (6) to some complex numbers qi ∈ C.
Note that it is clearly that ϕC is faithful and the image are exactly the traceless
endomorphisms of /S, denoted by End0(/S), hence we obtained an isomorphism of
C−linear spaces

ImH⊗R C ∼= End0(/S) (8)

(2) Similarly, one can also expand φ to φC : H ⊗R C −→ End(/S+ ⊕ /S−) to obtain a
representation of C`(R4)⊗RC, by replacing h appeared in (7) to some 2×2matrix.
It also obviously that this representation ofH⊗RC is faithful as well, and the image
can be identified with the C−linear space Hom(/S+; /S−), hence we obtained

H⊗R C ∼= Hom(/S+; /S−) (9)

. ♣

Luckily, the irreducible Clifford representations are not too much, and they can be
classified completely:

Theorem 1.1. Let V be a Euclidean space over R.

• If dimV = 0 mod 2, then there is an unique irreducible representation of C`(V ); If
dimV = 1 mod 2, then there are only 2 irreducible representations of C`(V ). The
irreducible C`(V )−module has complex dimension 2[

dimV
2 ], denoted by /SV .

• Every irreducible representation ofC`(V ) extends to a representation ofC`(V )⊗RCwhich
is again irreducible.

Table 1 is a list of the numbers of irreducible representations nk and the dimensions
of irreducible Clifford modules for each C`(Rk) (k ≤ 8).

We refer to [6, §1.5] for a detailed proof of theorem 1.1.
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Table 1: Classification List of Irreducible Representations

k C`(Rk) C`(Rk)⊗R C nk /Sk

1 C C⊕ C 2 C

2 H End(C2) 1 C2

3 H⊕H End(C2)⊕ End(C2) 2 /S

4 End(H2) End(C4) 1 /S+ ⊕ /S−

5 End(C4) End(C4)⊕ End(C4) 2 C4

6 End(R8) End(C8) 1 C8

7 End(R8)⊕ End(R8) End(C8)⊕ End(C8) 2 C8

8 End (R16) End (C16) 1 C16

1.2 Spin Groups and Spin Representations

One important application of Clifford algebras is to construct rotations in Rn.

Definition 1.3 (Spin group). The Spin group Spin(V ) ⊂ C`(V ) is a group generated by the
elements with the form v1 · · · · · v2k, where v1, ..., v2k ∈ V with |vi|2 = 1. ♣

Remark 1.4. Recall that by (1), each element v ∈ V with |v|2 = 1 has an inverse in C`(V ),
namely v−1 = −v. ♣

Now, let σ := v1 · · · v2k ∈ Spin(V ), w ∈ V , let’s compute what is σ · w · σ−1. By
applying (1) we have for any vi:

vi · w · v−1
i = −vi · w · vi = −vi · (−vi · w − 2〈vi, w〉)

= −(w − 2〈vi, w〉vi)
= −Rvi(w)

where Rvi(w) means reflection of w along v
⊥
i . Therefore we have

σ · w · σ−1 = (−1)2kv1 · · · v2k · w · v1 · · · v2k
= Rv2k ◦ · · · ◦ Rv1(w)

Recall that Cartan-Dioudonneé theorem asserts that every rotation in SO(V ) can be
decomposed as the even times compositions of reflections. Thus we obtained:
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Lemma 1.2. The group (real) representation

φ : Spin(V ) −→ SO(V ), σ 7→
(
w 7→ σ · w · σ−1

)
is an epimorphism. Moreover we have kerφ = Z2 = {±1}, hence

Spin(V )/Z2
∼= SO(V )

which means Spin(V ) is a double cover of SO(V ).

Remark 1.5. • Notice that Z2 = {±1} ⊂ Spin(n) as the center, and φmaps Z2 to the
identity matrix.

• For dimV ≥ 3, π1(SO(V )) ∼= Z2, hence by double covering, π1(Spin(V )) is an
index-2 subgroup of Z2, which is trivial, hence Spin(V ) is simply connected and in
fact an universal cover of SO(V ).

Example 1.5. (1) Spin(1) ∼= Z2. Since the unimodular vectors in R are just ±1, they
generate themselves in C`(R) ∼= C.

(2) Spin(2) ∼= S1. Since the unimodular vectors in R2 are the unit circle S1, which is
embedded in the (i, j)−plane in H (see Example 1.1 (2)), hence it generates itself.

(3) Spin(3) ∼= U(1,H) ∼= Sp(1). Since R3 ∼= ImH is diagonally embedded into H ⊕
H ∼= C`(R3) via q 7→ (−q, q) (cf. Example 1.1 (3)). Hence Spin(3) is generated by
even-times product of the elements with the form (−q, q), where |q|2 = 1. Which
is equivalent to be generated by q ∈ ImH in H (since product even-times kills the
negative sign), which is U(1,H). Topologically it is an S3 ∼= SU(2), indeed a double
cover of RP3 ∼= SO(3).

(4) Spin(4) ∼= Spin(3)×Spin(3). BecauseR4 ∼= H is embedded in End(H2) ∼= C`(R4)

via h 7→
(
0 −h̄
h 0

)
(cf. Example 1.1 (4)), and even-times products of the elements

of the anti-diagonal matrices will be diagonal, thus Spin(4) is actually generated by
unit quaternion in H⊕H, which is Spin(3)× Spin(3). ♣

Remark 1.6. It will be convenient to write

Spin(4) ∼= Spin(3)× Spin(3) ∼= SU+(2)× SU−(2)

since it will help us towrite down the Spin representations simply bymatrixmultiplication.
♣

As a Lie group, the Lie algebra spin(n) is isomorphic to so(n) according to lemma
1.2. Then it is natural to study the exponential map exp : spin(n) −→ Spin(n). Since
Spin(n) ⊂ C`(Rn), we hope the value expX can be presented by elements in Clifford
algebra, so that the rotation action of expX on Rn can be presented by multiplication in
C`(Rn).

Note that so(n) is identified with
∧2 Rn, the basis can be write as ei ∧ ej , where ei

are orthonormal basis in Rn. It stands for a matrix Eij − Eji.
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Theorem 1.2. The exponential map is computed as

exp : spin(n) −→ Spin(n) ⊂ C`(Rn)

exp(θ(ei ∧ ej)) = cos
θ

2
+ sin

θ

2
ei · ej

(10)

proof . Notice that in SO(n), exp(θ(ei ∧ ej)) represents for the rotation in (i, j)-
plane, rotating along ei → ej by θ-angle. Then it suffices to notice that the action

w 7→
(
cos

θ

2
+ sin

θ

2
ei · ej

)
· w ·

(
cos

θ

2
+ sin

θ

2
ei · ej

)−1

precisely means the rotation in (i, j)-plane, rotating along ei → ej by θ-angle. That will
prove the claim. ♣

Another important fact about spin groups is their representations.

Theorem 1.3. There is a unique complex representation of Spin(V ), denoted by

ρ : Spin(V ) −→ GL(/SV )

distinguished by the property: ρ can be extended to an irreducible representation of C`(V ) (cf.
Theorem 1.1).

Such a representation is called the Spin representation of Spin(V ), the elements in /SV are
called spinors.

We refer to [2, §2] [6, §1] for a detailed proof. We shall just construct some examples.
Remark 1.7. The spin representation doesn’t imply that it is either irreducible or the unique
Spin(n)-representation. In fact, when dimV = 2k is even, the spin representation is not
irreducible, since /S2k will split into two sub-representation, namely /S2k+ ⊕ /S2k− .

Example 1.6. (i) The spin representation of Spin(3) ∼= U(1,H) ∼= SU(2) is simply

ρ : Spin(3) ∼= SU(2) −→ GL(/S), A 7→ A

which is an irreducible representation.
(ii) The spin representation of Spin(4) ∼= SU+(2)× SU−(2) (cf. remark 1.6) is:

ρ : Spin(4) ∼= SU+(2)× SU−(2) −→ GL(/S+ ⊕ /S−)

by

(h+, h−) 7→ (h+, h−)

(
A+

A−

)
which is reducible with two irreducible subspaces /S± respectively, the restricted ir-
reducible representation of on /S± will be denoted by ρ±, hence ρ = ρ+ ⊕ ρ−. ♣

Remark 1.8. • Note that ρ(±1) = ±Id/SV by the property ρ extends to an irreducible
Clifford representation.

• We can equip with /SV an Hermitian inner product so that it is Spin(V )-invariant,
hence the spin representation ρ is in fact taking values in U(/SV ).
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1.3 Spinc Groups

It is natural to define a subgroup in the complexification algebra C`(V )⊗R C.

Definition 1.4. The group Spinc(n) ⊂ C`(Rn)⊗RC is the subgroup generated by Spin(n)
and the unit complex numbers U(1).

Remark 1.9. (a) Apparently,

Spinc(n) = {λ⊗ σ|λ ∈ U(1), σ ∈ Spin(n)}
:= U(1) · Spin(n) ∼= Spin(n)×Z2 U(1)

(11)

Since we can define a map

φ : Spin(n)× U(1) −→ Spinc(n), (σ, λ) 7→ λ⊗ σ

which is an epimorphism and kerφ are of the form (λ · 1, λ−1), λ ∈ R, hence it
could only be ±1.

(b) As a notation convention, an element in Spinc(n) will be denoted by λ ⊗ σ, and
U(1) is embedded in Spinc(n) as the center.

(c) Like the real case (cf. lemma 1.2), Spinc(n) also admits a well-defined real represen-
tation:

φc : Spinc(n) −→ SO(n)

by
λ⊗ σ 7→

(
v 7→ σ · v · σ−1

)
since ±σ yields the same representation.
Moreover, φc is full and kerφc ∼= U(1), hence we have a short exact sequence of Lie
groups

1 −→ U(1) −→ Spinc(n)
ϕc−→ SO(n) −→ 1

(d) By (11), the Lie algebra of Spinc(n) is simply

spin(n)⊕ iR ∼= so(n)⊕ iR

hence by (10), we can compute the exponential map by

exp(θ(ei ∧ ej, it)) =
(
cos

θ

2
+ sin

θ

2
ei · ej

)
⊗ eitθ

Example 1.7. (i) For dimV = 3, we have

Spinc(3) ∼= U(1) · SU(2) ∼= U(2)

Therefore, we see that Spinc(n) is not the complexification of Spin(n), since Spinc

group may not even be complex Lie group.
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(ii) For dimV = 4, we have

Spinc(4) ∼=
SU(2)× SU(2)× U(1)

Z2

∼=
{(

λA+ O
O λA−

)∣∣∣∣λ ∈ U(1), A± ∈ SU±(2)

}
=

{(
A+ O
O A−

)
∈ U+(2)× U−(2)

∣∣∣∣ detA+ = detA−

}
Similar to the spin group (cf. Theorem 1.3), Spinc groups also have a distinguished

spin representation.

Theorem 1.4. Let ρ : Spin(V ) −→ GL(/SV ) be a spin representation, then ρ extends uniquely
to the representation

ρc : Spinc(V ) −→ GL(/SV )

such a distinguished representation will still be called the spin representation of Spinc(V ).

Hence by theorem 1.1, we have dimC /SV = 2[
dimV

2 ]. A proof can be found in [2, §2.6].
Remark 1.10. (a) Like the Spin(n) case, /SV also admits a Spinc(n)−invariantHermitian

inner product, see remark 1.8, hence ρc is actually taking values in U(/SV ).
(b) There is a well-defined surjection

ρdet : Spinc(n) −→ U(1)/Z2

∼=−→ U(1)
λ⊗ σ 7→ [λ det ρ(σ)] 7→ (λ det ρ(σ))2

whose kernel is precisely Spin(n). It is well-defined, since for different presentation
−λ⊗ (−σ),we have

ρdet((−λ)⊗ (−σ)) = (−λ det(−ρ(σ)))2 = (λ det ρ(σ))2

hence we have a short exact sequence of Lie groups:

1 −→ Spin(n) ↪→ Spinc(n)
ρdet↠ U(1) −→ 1

(c) Note that for λ ⊗ 1 ∈ U(1) ⊂ Spinc(n), we have ρc(λ ⊗ 1) = λ · Id/Sn due to
the fact that ρc also extends to an irreducible C` (Rn) ⊗R C representation. See
following diagram.

C` (Rn)

C`(Rn)⊗R C End(/Sn)

Spinc(n) GL(/Sn)

Spin(n)

irreducible Clifford representation

ρc

ρ
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Here are examples for spin representations for n = 3, 4, and the computations of
ρdet.

Example 1.8. (1) The spin representation of Spinc(3) ∼= U(2) is simply trivial, since it
is taking value in U(/S) ∼= U(2), ρc is just the identity.

As for ρdet, write an element in Spinc(3) as λA, whereA ∈ SU(2), hence by remark
1.10 (b), we have

ρdet(λA) = λ2 detA = λ2

hence ρdet is just taking the determinant of matrices in U(2) ∼= Spinc(3).
(2) The spin representation of Spinc(4) is again trivial

(w+, w−) ∈ /S+ ⊕ /S− 7→ (w+, w−)

(
λA+ 0
0 λA−

)
which is not irreducible. It is also convenient to define two irreducible sub-representations
ρc± on /S± (cf. Example 1.6 (ii)):

ρc±

(
λA+ O
O λA−

)
= λA± ∈ U(/S±)

As for ρdet, we compute by definition that

ρdet

(
λA+ 0
0 λA−

)
= λ2(detA+)(detA−) = detλ2

thus if we write elements in Spinc(4) as (A+, A−) =

(
A+ 0
0 A−

)
where A± ∈

U(2) and detA+ = detA−, then we have 4

ρdet(A+, A−) = detA+ = detA−

Appendix 1.A The Quaternion Algebra H
Definition 1.5 (Quaternion). The set of quaternion numbers H is an unital R−algebra
generated by 1, i, j, k, in which i, j, k are called the imaginary unit, subordinate to the
relation

j2 = j2 = k2 = ijk = −1
A quaternion number is an element q ∈ H, which can be presented by

q = q0 + q1i+ q2j + q3k

where qi ∈ R. ♣
4In general, ρdet can have nothing to do with the determinant. For example

Spinc(6) = SU(4)×Z2
U(1) = U(4)

the spin representation is again the trivial one, so we have ρdet(λA) = λ2, but detλA = λ4.
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Remark 1.11. (1) It is convenient to embed R3 into H by identifying R3 ∼= ImH. Under
this setting, it is convenient to denote a quaternion by q = q0 + q, where q0 is called the
scalar part or real part, q is called the vector part or imaginary part.

Notice that for two pure imaginary quaternions q,h ∈ R3 ∼= ImH, we can compute
their multiplication by

qh = −q · h+ q × h

where · and × are inner and exterior product in R3 respectively. Therefore, the multipli-
cation of two quaternions q, h ∈ H can be write as

qh = (q0h0 − q · h) + (q0h+ h0q + q × h) (12)

(2) Like complex numbers, we can also define the conjugate of a quaternion q = q0+q
by q̄ := q0 − q, and the square-module of q is defined by |q|2 := qq̄, which is indeed a
positive real number by equation (12).

(3) Notice that H is a divisible algebra5. That is for any non-zero quaternion q 6= 0,
there exists an inverse q−1 such that qq−1 = q−1q = 1. Here the inverse is simply q/|q|2,
in particular, if q ∈ U(1,H) which is a unit quaternion, then q̄ = q−1. ♣

Quaternion can be used to present rotations in R3.

Proposition 1.1. (i) Every rotation in SO(3) can be presented by h 7→ qhq̄ where q ∈
U(1,H).

(ii) Every rotation in SO(4) can be presented by h 7→ q+hq− where q± ∈ U(1,H).

Like complex numbers, a quaternion also admits a matrix presentation6. In fact, de-
noted by

i =

(
0 −1
1 0

)
, j =

(
0

√
−1√

−1 0

)
, k =

(√
−1 0
0 −

√
−1

)
(13)

then the quaternion q = q0 + q1i+ q2j + q3k can be write by

q =

(
q0 +

√
−1q3 −q1 +

√
−1q2

q1 +
√
−1q2 q0 +

√
−1q3

)
∈ End(C2) (14)

hence the algebra H is embedded as an R−subalgebra in End(C2).
Moreover, one can find that

det q =
3∑
i=0

q2i = |q|2

Thematrix presentation can help us to compute the complexificationH⊗RC, which
was claimed in example 1.1 part (2).

5In fact, the only divisible associative algebra over R are of dimension 1,2 and 4. The only divisible
non-associative algebra over R is the octonion O, which is of dimension 8.

6Algebraically, when we say an algebra A admits a k−matrix presentation, that implies there is an irre-
ducible k−representation of A into Endk(W ), whereW is a k−vector space.
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Proposition 1.2 (Complexification). The complexificationH⊗RC is isomorphic to End(C⊕C).

proof . Recall that End(C⊕C) as an R−algebra is generated by 1, i, j, k which was

defined in (13) together with
(
0 1
1 0

)
, as aC−algebra, it is generated by 1, i and

(
0 1
1 0

)
.

Now, as an R−subalgebra, H is generated by 1, i, j, k, by complexification, it allows

us to multiple with
√
−1, that yields the matrix

(
0 1
1 0

)
, hence H⊗R C ∼= End(C⊕ C)

as an isomorphism between C−algebras. ♣
Intuitively, an element of the complexificationH⊗R C can be simply understood as

replacing each qi ∈ R in (14) to some complex numbers qi ∈ C.
Remark 1.12. In particular, if we regard H as a complex vector space /S (cf. example 1.2 (1)),
we have

End(/S) = H⊗R C

. ♣
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2 Spin Geometry and Dirac Operators

In what follows, we assume (M, g) is an n−dimensional compact oriented 7 Rieman-
nian manifold. Let P be the frame bundle ofM , which is a principal SO(n)−bundle on
M under our settings. Let

gαβ : Uα ∩ Uβ −→ SO(n)

be the transition functions of P , where {Uα} should be chose to be a good cover ofM .
We will globalize all constructions in § 1 to the geometric objects onM .

2.1 Spin Structures and Spinor Bundles

Definition 2.1 (Spin Structure). A spin structure on (M, g) is a choice of Spin(n)−lifting
of the transition functions:

g̃αβ : Uα ∩ Uβ −→ Spin(n)

in the sense that φ◦g̃αβ = gαβ and such that {g̃αβ} can define a principal Spin(n)−bundle
P̃ . Where φ is the standard real representation of Spin(n) defined in lemma 1.2. ♣

We can see that if (M, g) admits a spin structure P̃ , then P̃ −→ P is a double cover.
Now, if (M, g) is a spin manifold with a spin structure P̃ , then by theorem 1.3, the

structure group Spin(n) has a distinguished spin representation ρ on /Sn, so we can define
an adjoint bundle of P̃ .

Definition 2.2 (Spinor Bundle). If (M, g) admits a spin structure P̃ , the adjoint bundle

/SM := P̃ ×ρ,Spin(n) /Sn

is called the spinor bundle ofM with respects to the chosen spin structure. A section ψ ∈
Γ(/SM) is called a spinor field or simply a spinor. ♣

Remark 2.1. • Recall that by remark 1.8, the fiber /Sn is a complex vector space en-
dowed with a Spin(n)−invariant Hermitian metric, hence /SM is in fact an Hermi-
tian vector bundle with rank 2[

dimM
2 ] (cf. Theorem 1.1), where the Hermitian metric

can be defined point-wisely. In particular it has U
(
2[

dimM
2 ]
)
as the structure group.

• The transition function of /SM is simply

ρ ◦ g̃αβ : Uα ∩ Uβ −→ U(/Sn)

and the transition of det /SM is simply

det ρ (g̃αβ) : Uα ∩ Uβ −→ U(/SM)
det−→ U(1)

7A manifoldM is oriented is equivalent to say its first Stiefel-Whitney class vanishes w1(M) = 0.
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• We call two spin structures P̃ , P̃ ′ are equivalent if they are isomorphic as principle
bundles, hence it is equivalent to say that they have the same spinor bundles.

Example 2.1. (1) When dimM = 3, as was shown in Example 1.6 (i), the spinor bundle
ofM is a rank 2 Hermitian vector bundle whose fiber is /S, the spinor bundle will
still be denoted by /S.

Since Spin(3) ∼= SU(2), we can see that the determinant line bundle det /S =
∧2 /S

has the transition function (cf. Example 1.6 (i)):

det(ρ (g̃αβ)) = det g̃αβ = 1

thus det /S of a 3-manifold is the trivial line bundle M × C, and hence /S has the
structure group SU(2).

Due to the simply connectedness of SU(2) ∼= S3 and dimM = 3, I conclude that
/S is trivial by an obstruction theoretical argument.

Recall that by (8) in Example 1.4, we have

TM ⊗ C ∼= End0(/S) ∼=
2∧
(TM ⊗ C)

(2) If dimM = 4, as was shown in Example 1.6 (ii), the spinor bundle ofM is a splitting
rank 4 Hermitian vector bundle

/S = /S+ ⊕ /S−

where /S± are rank 2 Hermitian bundles, induced by ρ± respectively (cf. example
1.6 (ii)). Sections in Γ(/S±) are called spinor fields with positive or negative chirality
respectively.

Similarly, by Example 1.6 (ii), we see that for a 4-manifold, the determinant line
bundle of its spinor bundle is trivial 8:

4∧(
/S+ ⊕ /S−

)
= det /S+ = det /S− =M × C

and by (9), we have
TM ⊗ C ∼= Hom(/S+; /S−)

However, not every compact oriented Riemannian manifold admits a spin structure,
the obstruction was described by the second Stiefel-Whitney class w2(M).

8Wewill see later (cf. Example 2.3 (1)) that for any spinmanifoldM , the first Chern class of /SM associated
to a spin structure satisfies

0 = c1(/SM ) mod 2
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Theorem 2.1. • An oriented Riemannian manifold (M, g) admits a spin structure if and only
if w2(M) = 0.

• If (M, g) admits a spin structure, then all possible spin structures are classified by cohomol-
ogy classes inH1(M ;Z2), that is they were classified by real line bundles overM .

Before proving the theorem, let’s first recall some notions in characteristic classes, I’d
like to refer to the excellent books [7–9] for more about this interesting topic.

Recall that all real vector bundles over (M, g) are 1-1 correspondent to the princi-
pal O(n)−bundles overM , denoted by PrinO(n)(M), which by homotopy theory, are 1-1
correspondent to

PrinO(n)(M)
1−1←→ [M ;BO(n)]

In here, BO(n) ∼= BGL(n,R) ∼= Grn (R∞) is the classifying space of O(n), and we have
the cohomology ring

H∗ (Grn(R∞);Z2) ∼= Z2[w1, ..., wn]

where those wk ∈ Hk(Grn(R∞);Z2) ∼= Z2 are the generators.
Now, for a real vector bundle E, let fE ∈ [M ;Grn(R∞)] be the unique map distin-

guished by the property that E is the pull-back of the universal bundle EO(n) along fE ,
denoted by f ∗

E the pull-back homomorphism between

f ∗
E : Hk (Grn (R∞) ;Z2) −→ Hk(M ;Z2)

Definition 2.3 (Stiefel-Whitney Classes). The k−th Stiefel-Whitney classwk(E) is defined
to be the pull-back of f ∗

E(wk) ∈ Hk(M ;Z2). ♣

Proof of Theorem 2.1. Notice that by lemma 1.2, there is a short exact sequence

1 −→ Z2 −→ Spin(n)
ϕ−→ SO(n) −→ 1

which induces a short exact sequences between non-Abelian sheaves:

1 −→ Z2 −→ Spin(n)
ϕ−→ SO(n) −→ 1

where Spin(n),SO(n) stands for the sheaves of smooth functions over (M, g) taking
values in Spin(n) and SO(n) respectively. Z2 stands for the locally constant sheaf and φ is
the double cover which was defined in lemma 1.2.

It induces a (not too) long exact sequence in cohomology9:

· · · → H1(M ;Z2) −→ H1(M ;Spin(n)) ϕ∗−→ H1(M ;SO(n)) w2−→ H2(M ;Z2) (15)
9For short exact sequence of non-Abelian sheaves

1 −→ F −→ G −→ H −→ 1

the induced long exact sequence will stop at

0 −→ H0(X;F) −→ · · · −→ H1(X;H)

which is to say the functorH2 will lost its exactness (the definition ofHk is similar as the cocycles of vector
bundles). But here we can extend it toH2(M ;Z2) because Z2 is the usual Abelian sheaf.
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We see that an SO(n)−bundle E = {gαβ} ∈ H1(M ;SO(n)) admits a Spin(n)−lifting,
if and only if it has a pre-image under φ∗, which if and only if, due to the exactness of (15),
w2(E) = 0.

We claim that w2 is actually taking the second Stiefel-Whitney class. To see this, we
will generalize the construction in Definition 2.3 for SO(n)-bundles.

For eachE, Let gE ∈ [M ;BSO(n)] be the unique map such thatE = g∗E(ESO(n)).
We shall claim that

(i) The cohomology ring of BSO(n) is

H∗(BSO(n);Z2) ∼= Z2[ω2, ..., ωk]

where ωk ∈ Hk(BSO(n);Z2) ∼= Z2 are generators for k ≥ 2, and

H1(BSO(n);Z2) = 0

(ii) The pull-back cohomology classes g∗E(ωk) ∈ Hk(M ;Z2) coincide with f ∗
E(wk),

where fE ∈ [M ;BO(n)] is unique mapping such that E is the pull-back of the
universal bundle EO(n) along fE .

If claim (i) & (ii) can be proved, then the result follows directly by applying (15) to the
classifying spaceBSO(n), and notice that g∗E induces the following commutative diagram
of exact sequences:

H1(M ;Spin(n)) H1(M ;SO(n)) H2(M ;Z2)

H1(BSO(n);Spin(n)) H1(BSO(n);SO(n)) H2(BSO(n);Z2)

Z2

ϕ∗ w2

g∗E g∗E

w2

g∗E

hence the w2 in the first line is indeed taking second Stiefel-Whitney class of E, because
the w2 in the second line sends ESO(n) to the generator.

Proof of (i) can be done by induction, which can be found in [10,Theorem 1.3]. Claim
(ii) is a consequence of (i), since the ωk(E) defined by g∗E(ωk) should satisfy the axioms of
Stiefel-Whitney classes, hence the result follows by the uniqueness.

For the classification of Spin(n)−structures ofP = (gαβ), we first fix a spin structure
g̃αβ as a frame point whose spinor bundle is denoted by /SM . Let L be a real line bundle
with the transition functions

rαβ : Uα ∩ Uβ −→ GL(1,R) ∼= Z2 = {±1} ⊂ Spin(n)

We can define a new Spin structure by twisted the original one by L, namely rαβ g̃αβ . It
indeed defined a spin structure since it is clearly satisfying the cocycle condition and

φ (rαβ g̃αβ) = φ(rαβ)φ (g̃αβ) = φ (g̃αβ) = gαβ
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Let /S ′
M be the spinor bundle associated to the twisted spin structure, then we find it has

transition functions (cf. Remark 1.8)

ρ (rαβ g̃αβ) = ρ(rαβ)ρ (g̃αβ) = rαβρ (g̃αβ)

thus /S ′
M = /SM ⊗ L in particular, the novel twisted spin structure coincides with the

original one if and only if their spinor bundles coincide, hence which if and only if L is
trivial. Hence all spin structures are classified by the real line bundles, and in particular it
is an affine space modeled onH1(M ;Z2) after picking a frame point. ♣

Some other proofs can be found in [11, §7.5.6] [6, §2.1] or Qiaochu Yuan’s answer.

Example 2.2. • If (M, g) is a 3-manifold, then M admits a spin structure. Because
every compact oriented 3-manifold has trivial tangent bundle, which can be proved
by applying Wu’s formula to compute w2(M) = 0 (see [12] [7, Exercise 12.4]10 or
here and here).

• M = CP2 has no spin structures, since

w2(P2) = c1
(
P2
)

mod 2

and c1(P2) ∈ H2(P2;Z) ∼= Z is the generator, which is not zero modulo 2. ♣

2.2 Spinc Structures

Definition 2.4. A Spinc−structure on (M, g) is a lifting of the transition functions gαβ of
P to

g̃cαβ : Uα ∩ Uβ −→ Spinc(n)

in the sense that φc ◦ g̃cαβ = gαβ , and g̃cαβ satisfy the cocycles condition so that it defines
a Spinc(n)-bundle P c. Here φc is the standard real presentation of Spinc(n) defined in
remark 1.9 (c). ♣

Like the spin structures, if (M, g) admits a Spinc structure, then by Theorem 1.4 we
can also associate it with an adjoint Hermitian vector bundle.

Definition 2.5. Let P c be a Spinc−structure on (M, g), then the adjoint bundle

P c ×ρc,Spinc(n) /Sn

will still be called the spinor bundle ofM with respect to the chosen Spinc−structure, which
will still be denoted by /SM . Here ρc is the unique spin representation of Spinc(n) which
extends the spin representation of Spin(n), see theorem 1.4. ♣

Different form the spin case, the determinant line bundle of a Spinc structure is a bit
subtle.

10An answer can be found at this Math Stack Exchange post.

https://math.stackexchange.com/questions/808263/spin-manifold-and-the-second-stiefel-whitney-class
https://math.stackexchange.com/questions/1107682/elementary-proof-of-the-fact-that-any-orientable-3-manifold-is-parallelizable
https://mathoverflow.net/questions/346977/parallelizability-of-3-manifolds
https://math.stackexchange.com/questions/275370/second-stiefel-whitney-class-of-a-3-manifold
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Definition 2.6. The determinant line bundle of the Spinc structure 11 is defined to be

L := P c ×ρdet C

where ρdet was defined in remark 1.10 (b). ♣

The existence of a Spinc structure is much easier than the spin structure, since the
map φc is not a double cover, it has kernel U(1) ∼= S1, hence P c can be viewed as a circle
bundle 12 over P .

Theorem 2.2. (i) (M, g) admits a Spinc−structure if and only if w2(M) is a modulo 2 re-
duction of some cM ∈ H2(M ;Z) 13.
More precisely, if (M, g) has a Spinc structure, then the first Chern class c1(L) ∈ H2(M ;Z)
of the determinant line bundle of the associated Spinc structure satisfies

w2(M) = c1(L) mod 2

Conversely, if w2(M) is a modulo 2 reduction of some c1(L) ∈ H2(M ;Z2), then there
exists a Spinc structure onM such that its determinant bundle equals to L.

(ii) If (M, g) is a Spinc manifold, then all possible Spinc structures are classified by the coho-
mology classes inH2(M ;Z), that is they are classified by complex line bundles onM .

Proof. The proof is similar as the proof of theorem 2.1.
Notice that (cf. remark 1.9 (c) & 1.10 (b))

ϕ := φc × ρdet : Spinc(n) −→ SO(n)× U(1)
λ⊗ σ 7→

(
φ(σ), λ2(det ρ(σ))2

) (16)

is a well-defined group homomorphism with kernel Z2, thus we have the short exact se-
quence of non-Abelian sheaves

1 −→ Z2 −→ Spinc(n)
φ−→ SO(n)× S1 −→ 1

and there is an induced exact sequence

H1(M ;Spinc(n)) H1(M ;SO(n))⊕H1 (M ;S1) H2(M ;Z2)

H1(M ;SO(n))⊕H2(M ;Z)

φ∗
δ

(17)
11One should be very careful that this L may not be det /SM ! However, when dimM = 3 they indeed

coincide, see example 1.8.
12We will see from the proof of theorem 2.2 that P c is actually a double cover of P × L.
13It is equivalent to say the third Stiefel-Whitney class ofM vanishesw3(M) = 0, see [6, Appendix B.13].
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notice that the last morphism δ is w2 ⊕ (r ◦ c1), where w2 is taking the second Stiefel-
Whitney class, c1 is taking the first Chern class of a line bundle in H1(M ;S1), r is the
modulo 2 reduction.

Now if (gαβ) ∈ H1(M ;SO(n)) admits a Spinc-lifting
(
g̃cαβ
)
, then we see that its

image under ϕ∗ in (17) is exactly gαβ ⊕ ρdet
(
g̃cαβ
)
, they stand for the frame bundle P and

the determinant line bundle L, respectively. Therefore, by the exactness of (17),M admits
a Spinc structure one must have

w2(M) + r ◦ c1 (L) = 0

which precisely means
w2(M) = c1 (L) mod 2

Conversely, if a line bundle L = (hαβ) ∈ H1(M ;S1) = H2(M ;Z) satisfying the
modulo 2 reduction of c1(L) is w2(M), then the image of gαβ ⊕ hαβ = P ⊕L under δ is
0, hence again by the exactness of (17), there is a Čech cocycle (g̃cαβ) ∈ H1(M ;Spinc(n))
such that

ϕ∗ (g̃cαβ) = φc
(
g̃cαβ
)
⊕ ρdet

(
g̃cαβ
)
= gαβ ⊕ hαβ

that is there exists 14 a Spinc−structure with its spinor bundle /SM such that

det /SM = L

As for the classification of Spinc structures, we first fix a Spinc structure
(
g̃cαβ
)
and

let /SM be its spinor bundle. Notice that for any line bundle L = (λαβ), the transition
functions λαβ ⊗ g̃cαβ also define a Spinc structure, since (cf. remark 1.9 (c))

φc
(
λαβ ⊗ g̃cαβ

)
= φc

(
g̃cαβ
)
= gαβ

and λαβ ⊗ g̃cαβ obviously satisfies the cocycle condition 15. Let /S ′
M be the spinor bundle

associated to the twisted Spinc structure, we see that its transition functions are (cf. remark
1.10 (c))

ρc
(
λαβ ⊗ g̃cαβ

)
= λαβρ

c(g̃cαβ)

14We can see that the existence of such a Spinc−structure is not unique, since by the exactness of (17), it
is unique if and only if δ = w2 ⊕ r ◦ c1 is surjective.
However, this is not always the case, for example, if (on a Spinc manifold)H2(M ;Z) has a 2-torsion, i.e.

there exists a line bundleL = (λαβ)withL2 = L⊗L is trivial, then for a given Spinc structure g̃cαβ (whose
determinant line bundle is denoted by L), we have a new Spinc structure obtained by twisted by L, namely
λαβ⊗ g̃cαβ , its associated determinant line bundle is denoted byL′. These two Spinc structures not coincide
unless L is trivial, but we can find that L = L′, since the transition function on L′ is (cf. remark 1.10 (b))

ρdet
(
λαβ ⊗ g̃cαβ

)
= λ2αβρdet

(
g̃cαβ
)

and L⊗ L is trivial implies λ2αβ = 1, hence L and L′ have same transition function.
What’s more, one can show by the universal coefficient theorem that δ is surjective (and hence the Spinc

structure is uniquely determined by its determinant line bundle) if and only ifH2(M ;Z) has no 2-torsions.
15The Spinc structure obtained by this way is called twisted by a line bundle L
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hence /S ′
M = /S⊗L. Therefore, the twisted Spinc structure coincides with the original one

if and only if
/SM = /S

′
M = /SM ⊗ L

which if and only if L is trivial, hence all Spinc structures S(M), after picking a frame
point (g̃cαβ), is an affine space modeled onH

2(M ;Z). ♣
We refer to [6, Appendix D], [13, Theorem 5.8] or this note for some other proofs

Example 2.3. (1) Every spin manifold is a Spinc manifold, since Spin(n) ⊂ Spinc(n),
we can extend its spin structure to a Spinc structure by twisting by any line bundle
L.

Hence in particular every oriented compact 3-manifolds are Spinc manifolds. But
different from the spin case (see Example 2.2), neither the spinor bundle /S nor the
det /S associated to a Spinc structure are necessarily to be trivial unless it was twisted
by a trivial line bundle, since Spinc(3) ∼= U(2).

As a special case, let /SM be the spinor bundle associated to the spin structure, then
the spinor bundle of the “trivial” Spinc structure (that is by twisting with a trivial
line bundle) is simply /SM ⊗ L, where L is a trivial line bundle.
Moreover, the determinant line bundle associated to this trivial Spinc structure is
L = det /SM . Therefore, by theorem 2.2, we have

0 = w2(M) = c1(/SM) mod 2

(2) CP2 is a Spinc manifold. It is not the only case, since every oriented compact 4-
manifold admits a Spinc structure. See theorem 2.3.

Remark 2.2. • If a Spincmanifold (M, g) is also spin, thenwe can divide its Spinc struc-
ture by its spin structure, that yields a well-defined line bundleL0. If we denoted /S

c
M

and /SM to be the spinor bundles associated to the Spinc and spin structures respec-
tively, then we see that

/S
c
M = /SM ⊗ L0

hence sometimes, Spinc structure is also called the twisted spin structure by a line bundle
L0. As a consequence, we have

det /ScM = det(/SM ⊗ L0) = det /SM ⊗ L2[
n
2 ]

0

hence we have their first Chern classes

c1
(
/S
c
M

)
= c1(/SM) + 2[

n
2 ]c1(L0) = 0 mod 2

The determinant line bundle of this Spinc structure is L2
0

• If a manifold is just Spinc, the notation /SM ⊗ L0 is not well-defined. But in some
literatures (cf. [3]), they will still use this notation to present the spinor bundle, and
L0 is called the virtual line bundle.

https://nicolas-ginoux.perso.math.cnrs.fr/spincstruct.pdf
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Theorem 2.3. Every oriented compact 4-manifold (M, g) admits a Spinc structure.

Proof. We first claim that the Spinc structure exists for a simply connected (M, g). Since
from the short exact sequence of coefficients:

1 −→ Z ×2−→ Z −→ Z2 −→ 1

we have
· · · → H2(M ;Z) −→ H2(M ;Z2)

δ−→ H3(M ;Z) = 0

where we have by Poincaré duality thatH3(M ;Z) ∼= H1(M ;Z) = 0. Thus w2(M) has a
lifting if and only if its image under δ is zero, which is exactly the case.

Now ifM is not simply connected, thanks to the compactness, we can choose a good
cover {Uα} together with a decomposition of the unit fα : Uα −→ R.

SinceUαβγ = Uα∩Uα∩Uγ is simply connected, every cocycle ηαβγ ∈ H2(Uαβγ ;Z2)
which presentsw2(M) can be lifted into some η̃αβγ ∈ H2(Uαβγ ;Z), we will use this piece-
wise lifting to construct a Spinc(4)-lifting of the frame bundle P = (gαβ).

Let

hαβ = exp

(
√
−1π

∑
γ

fγ η̃αβγ

)
: Uα ∩ Uβ −→ U(1)

by computation we find that
hαβhβγhγα = ηαβγ

Also, if we denoted by g̃αβ a Spin(4) lifting of the cocycle gαβ , we know that the obstruc-
tions are exactly the second Stiefel-Whitney class

ηαβγ = g̃αβ g̃βγ g̃γα

hence
hαβ g̃αβ : Uα ∩ Uβ −→ Spinc(n)

defines a Čech cocycle which is a lifting of gαβ . ♣
Remark 2.3. For a 4-manifold, recall that by Example 1.7, its Spinc structure has the form

g̃cαβ =

(
λαβAαβ+ O

O λαβAαβ−

)
: Uα ∩ Uβ −→ Spinc(4)

hence by example 1.8 the transition function of the determinant line bundle L is

λ2αβ : Uα ∩ Uβ −→ U(1)

Note that its Spinc-spinor bundle has the form /S+ ⊕ /S− (cf. Example 1.8), we see that

L = det /S+ = det /S−

and
L ⊗ L = det

(
/S+ ⊕ /S−

)
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2.3 Structures on Spinor Bundles

Spinor bundles /SM will have three natural structures. First each fiber endows with a
Clifford action, which makes it a bundle of Clifford module. Then there is a natural con-
nection induced from the Levi-Civita connection, which will be called the spin connection.
Finally, these two structures make /SM becomes a Dirac bundle, hence there is a natural
Dirac operator defined on it.

2.3.1 Bundles of Clifford Module

Same as definition 1.2, we can globalize the notion of Clifford modules to a geometric
object.

Definition 2.7. A (complex) vector bundleE −→M is called a bundle of Cliffordmodule,
if it endows with an action of TM :

C` : TM ⊗ E −→ E

such that v · (v · s) = −g(v, v)s = −|v|2s. ♣

So a bundle of Clifford module is just a vector bundle with each fiber endows with a
Clifford multiplication. Some examples can be constructed by globalizing example 1.2 and
1.3.

Example 2.4. (1) If (M, g) is a spin or Spinc manifold, then its spinor bundle /SM asso-
ciated with the spin or Spinc structure is a bundle of Clifford module.

(2) In particular if dimM = 4, then its spinor bundle (with respect to a spin or Spinc

structure) splits as /S+⊕/S−. Choose a local frame e1, ..., e4 ofTM , then theClifford
multiplication of ei’s on the fiber (ψ+, ψ−) can be given by (see (4) and Example 1.3)

e1 · (ψ+, ψ−) := (ψ+, ψ−)

(
0 −1
1 0

)
, e2 · (ψ+, ψ−) = (ψ+, ψ−)

(
0 i
i 0

)
e3 · (ψ+, ψ−) := (ψ+, ψ−)

(
0 j
j 0

)
, e3 · (ψ+, ψ−) := (ψ+, ψ−)

(
0 k
k 0

) (18)

where i, j, k are the imaginary unit in H which should be presented by 2× 2 com-
plex matrices, see (14). We can also see that the Clifford multiplication changes the
chirality.

(3) Similarly, if dimM = 3, the Clifford action of a local frame e1, e2, e3 on ψ ∈
/S is given by multiplication with i, j, k respectively, where again i, j, k should be
presented by (14).

(4) The exterior bundle
∧
T ∗
CM is a bundle of Clifford module, where the Clifford mul-

tiplication can be given by (4).
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Remark 2.4. (i) Identifying TM ∼= T ∗M by the Riemannian metric, for a cotangent
vector ω in T ∗M , its covector ω∗ can be expressed by the local frame e1, ..., en of
TM by

ω∗ =
n∑
i=1

ω(ei)ei

hence if E is a bundle of Clifford module, then there is also an action

C` : T ∗M ⊗ E −→ E

given by

C`(ω∗ ⊗ s) =
n∑
i=1

ω(ei)ei · s

(ii) If E is a bundle of Clifford module, by extending the Clifford multiplication of
T ∗M , there is also an action of the exterior bundle

∧
T ∗
CM , which maps such as for

ω a 2−form,
C` : ω ⊗ s 7→

∑
i,j

ω(ei, ej)ei · ej · s

(iii) If E is a bundle of Clifford module, by extending the Clifford multiplication of
TM , there is also an action of the exterior bundle

∧
TM (and hence also

∧
T ∗M ),

which will still be called the Clifford multiplication, and it maps as

C` : e1 ∧ · · · ∧ ek ⊗ s 7→ e1 · · · · · ek · s

(iv) In particular, by (18) in Example 2.4, we can compute that if dimM = 4, then the
self-dual part

∧2
+ T

∗M acts trivially on /S−, that is for self-dual 2-form ω+,

ω+ · (ψ+, ψ−) = ω+ · (ψ+, 0) = (ω+ · ψ+, 0)

and dually, the anti-self-dual part acts trivially on /S+.

Moreover, by computation, we find that this Clifford action

C` :
∧2

+
T ∗M −→ End

(
/S+

)
is faithful, whose is image is just su

(
/S+

)
, hence

∧2
+ T

∗M can be identified with
su(/S+).

2.3.2 Connections on Spinor Bundles

Now we assume (M, g) is a spin or Spinc manifold, then on the spinor bundle /SM
associated to a chosen Spinc or spin structure, we can canonically construct a connection
∇ on it, called the spin connection.
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• First let me recall that if there is a local diffeomorphism (for example covering map)
between two Lie groups φ : G −→ H , then the tangent (dφ)1 identifies their Lie
algebras g ∼= h. Now if ω is a connection on a principal H-bundle PH −→ M
(which is locally an h-valued 1-form on M ), and let PG be a principal G-bundle
which lifts PH along φ, then ω uniquely 16 induces a connection ω̃ on PG by

(dφ)1ω̃ = ω

• Now, we assume (M, g) has a spin structure P̃ , of course it is a Spin(n)-principal
bundle which lifts the SO(n)-frame bundle P along φ. Thus there exists a unique
connection ω̃ on P̃ induced by the Levi-Civita connection ω on P .

Notice that locally, the Levi-Civita connection ω = (ωij) is an so(n)−valued 1-
form, it can be write as

ω = (ωij) =
∑
i<j

ωijei ∧ ej

where ei ∧ ej ’s are basis of so(n) ∼=
∧2 Rn (see theorem 1.2).

Hence it uniquely induces a connection ω̃ on P̃ by the tangent map of the real repre-
sentation

(dφ)1 : spin(n) ∼= so(n) −→ so(n)

which we claim locally it is

ω̃ =
1

2

∑
i<j

ωijei ∧ ej

Indeed, we can compute by theorem 1.2:

(dφ)1

(
1

2

∑
i<j

ωijei ∧ ej

)
=
∑
i<j

ωij(dφ)1

(ei ∧ ej
2

)
=
∑
i<j

ωij
d

dt

∣∣∣∣
t=0

φ

(
exp
(
t

2
(ei ∧ ej)

))
=
∑
i<j

ωij
d

dt

∣∣∣∣
t=0

φ

(
cos

t

2
+ sin

t

2
ei · ej

)
=
∑
i<j

ωij
d

dt

∣∣∣∣
t=0

exp(t(ei ∧ ej))

=
∑
i<j

ωijei ∧ ej = Ω

16The uniqueness is due to the fact that ϕ is a local diffeomorphism and hence (dϕ)1 is an isomorphism.
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• Moreover, the induced connection ω̃ will induce a connection∇ on its adjoint bun-
dle /SM

∇ : Γ(/SM) −→ Γ(/SM ⊗ T ∗M)

by
(dρ)1 : spin(n) ∼= so(n) −→ gl(/SM)

it can be write as

∇ψ = dψ + ((dρ)1ω̃) (ψ) = dψ +
1

2

∑
i<j

ωijei · ej · ψ

= dψ +
1

4

∑
i,j

ωijei · ej · ψ
(19)

We call this induced connection∇ the spin connection on /SM induced by a chosen
spin structure.

• Now, if (M, g) is a Spinc manifold with a Spinc structure P c, letL be the associated
line bundle. Then from (16) we know that P c lifts P × detL along

ϕ := φc × ρdet : Spinc(n) −→ SO(n)× U(1)
λ⊗ σ 7→ (φ(σ), (ρdet(λ⊗ σ)))

Let ω be the Levi-Civita connection on P as before. In order to induce a connection
on P c, we also need to fix a U(1)-connection A on L.
Write A = d +

√
−1a where a ∈ Ω1(M ;R), which is an U(1)-connection on L,

hence now, by the same method as before, (dϕ)1 will induce a connection ∇A on
/SM , it write as (by remark 1.9 (d))

∇Aψ = dψ +
1

2

(
a+

∑
i<j

ωijei · ej

)
· ψ

= dψ +
1

2
a · ψ +

1

4

∑
i,j

ωijei · ej · ψ
(20)

where a ·ψ is the Clifford multiplication by T ∗M , see remark 2.4. This∇A will still
be called the spin connection on /SM although it is induced by a Spinc structure.

By our construction, the spin connections∇ or∇A will satisfy the following property:

Theorem 2.4. (i) The spin connection∇ is compatible with the Levi-Civita connectionD on
TM , that is for any v ∈ Γ(TM) and ψ ∈ Γ(/SM)

∇(v · ψ) = (Dv) · ψ + v · (∇ψ) (21)

where · stands for the Clifford multiplication.
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(ii) The spin connection is also compatible with the Hermitian metric 〈·, ·〉 on /SM in the sense
that for any v ∈ Γ(TM) and ψ1, ψ2 ∈ Γ(/SM), we have

∂〈ψ1, ψ2〉
∂v

= 〈∇vψ1, ψ2〉+ 〈ψ1,∇vψ2〉 (22)

The proof of this two results can be found in [6, Prop 4.4 & 4.11] (or leave as an exer-
cise).

Then it is natural to study the curvature of the spin connections. In what follows we
denote

Ω = D2 = dω + ω ∧ ω ∈ Ω2(M ; End(TM))

to be the curvature of the Levi-Civita connection D = d + ω, and denote R = ∇2 or
RA = ∇2

A to be the curvature of spin connections, which are End(/SM)-valued 2-forms,
as a notation convention, we use Reiej = R(ei, ej) to be the value 17 of a curvature R at
ei ∧ ej ∈

∧2 TxM .
Also recall that from Riemannian geometry, the scalar curvature sg(x) of a Rieman-

nian manifold (M, g) is defined by

sg(x) :=
∑
i,j

Ωijij(x) =
∑
i,j

gx
(
Ωeiej(ei), ej

)
=
∑
i,j

Ricg(ei, ej)

where ei’s are local frames of TM at x.

Lemma 2.1. Let e1, ..., en be a geodesic local orthonormal frame of TM , that is Deiej = 0,
then

(a) IfM is a spin manifold with the spinor bundle /SM , then for anyψ ∈ Γ(/SM), the curvature
R satisfies

1

2

∑
i,j

ei · ejReiej(ψ) =
sg
4
ψ

(b) IfM is a Spinc manifold with the spinor bundle /SM , and let A = d + a be a connection
onvits determinant line bundle L, then for any ψ ∈ Γ(/SM), the curvature RA satisfies

1

2

∑
i,j

ei · ejRAeiej
(ψ) =

sg
4
ψ +

FA
2
· ψ

where FA = da is the curvature of A, the · means the Clifford multiplication (see remark
2.4 (iii)).

The proof can be done by a straightforward computation of R and RA, which can be
found in [3, pp. 63] (or leave as an exercise).

17A two form ω is a form ωx :
∧2

TxM −→ R which is smooth as x varies.
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2.3.3 Dirac Bundles and Dirac Operators

The spin connection give a new structure on /SM , called the Dirac bundle.

Definition 2.8 (Dirac Bundle). A bundle of Clifford module E −→ M is called a Dirac
bundle if there is a connection∇ onE, called the Dirac connection, such that it is compatible
with the Levi-Civita connectionD on TM :

∇(v · s) = (Dv) · s+ v · (∇s)

where v ∈ Γ(TM), s ∈ Γ(E) and the · is the Clifford multiplication. ♣

What makes Dirac special is that there exists a natural operator on Γ(E):

Definition 2.9 (Dirac Operator). IfE is Dirac bundle with a Dirac connection∇, then the
operator

D : Γ(E)
∇−→ Γ(T ∗M ⊗ E) Cℓ−→ Γ(E)

is called the Dirac operator. We call D2 the Dirac Laplacian operator. ♣

Remark 2.5. Let e1, ..., en be a local frame ofTM , thenDirac operator has a local expression

Ds =
n∑
i=1

ei · ∇eis

what’s more, one can show that this local expression is independent of the choice of the
frames. ♣

Example 2.5. (a) If (M, g) is a Spinc or spin manifold, then the spinor bundle /SM is a
Dirac bundle, the Dirac connection is the spin connection, since by (21) they satisfy
the compatibility condition. As a notation convention the Dirac operator on /SM
will be denoted by /D or /DA if we refer to a Spinc structure.

(b) In particular, if dimM = 4, the spinor bundle splits as /S+ ⊕ /S−, recall that the
Clifford action on /S+ ⊕ /S− changes the chirality (cf. Example 2.4 (18)), hence the

Dirac operator /D also splits as

(
/D
−

/D
+

)
, where

/D± : Γ
(
/S±
)
−→ Γ

(
/S∓
)

which changes the chirality.

(c) For a special case, if (M, g) is just R4 with the standard Euclidean metric, then it
has both unique spin and Spinc structures 18. We will compute /D or /DA concretely.

For the spin structure, let’s compute /D
+ first. Recall that /S± can be viewed as the

trivial quaternionic line bundle R4 ×H, hence a section f ∈ Γ(/S±) can be viewed

18They actually coincide.
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as a quaternionic-valued function on M . Since the Levi-Civita connection is the
trivial one, the spin connection is simply taking directional derivative, hence by
(18) we have

/D
+
f = C`(∇f) = C`

(
3∑
i=0

∂f

∂xi
⊗ dxi

)

=
∂f

∂x0
+
∂f

∂x1
i+

∂f

∂x2
j +

∂f

∂x3
k

hence we see that /D
+ is just the quaternionic Cauchy-Riemann operator.

Similarly, by (7) we have

/D
−
= − ∂

∂x0
+

∂

∂x1
i+

∂

∂x2
j +

∂

∂x3
k

and it is clearly that /D
2
=

(
/D
− /D

+
0

0 /D
− /D

+

)
is the usual Laplacian on R4.

Let A = d+
√
−1a be a connection on L = det /S+ = det /S−, then by (20), /DA is

simply

/DAf = /Df +

√
−1a · f
2

(d) WhenM = R3, the Dirac operator is just

/D =
∂

∂x1
i+

∂

∂x2
j +

∂

∂x3
k

Again, /D2 is the usual Laplacian onR3, hence the Dirac operator can be understood
as the “square root” of the Laplacian.

(e) IfM = R2, then /D
± are just the usual Cauchy-Riemann operator.

(f) Recall that the Levi-Civita connection can be extended to T ∗M and
∧
T ∗
CM , which

will still be denoted by D. Hence by (5), the exterior bundle
∧
T ∗
CM is a Dirac

bundle with the Levi-Civita connectionD as its Dirac connection.

Moreover, theDirac operator is just theHodge operatorD = d+δ, where δ = −∗d∗
is the Hodge codifferential.

To see this, we notice that for the induced Levi-Civita connection on T ∗M , one has
δω =

∑
i

ιeiDeiω

dω = −
∑
i

g(ei, ·) ∧Deiω

by remark 2.5 and (5), the result follows by a straightforward computation:

Dω =
∑
i

ei ·Deiω =
∑
i=1

(ιeiDeiω − g(ei, ·) ∧Deiω)

= (d+ δ)ω
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Remark 2.6. For /DA, it is obviously that by (20), we have that if a ∈ Ω1(M ;
√
−1R) then

A+ a is another connection on the determinant line bundle L, then

/DA+aψ = /DAψ +
a · ψ
2

2.4 Properties of Dirac Operators

In this subsection, I will introduce 3 main properties of the Dirac operator. In this
section, the Dirac operators will be the ones on a spinor bundle /SM forM with a spin or
Spinc structure.

2.4.1 Formal Self-Adjointness

Let 〈·, ·〉x be the Spinc or spin invariant Hermitian metric on each fiber of /SM , then
choose a volume form (an orientation) dV on M , we can define an L2−inner product
(·, ·)L2 on Γ(/SM): for any two ψ1, ψ2 ∈ Γ(/SM), define

(ψ1, ψ2)L2 :=

∫
M

〈ψ1, ψ2〉xdV

Theorem 2.5. The Dirac operator /D or /DA is formal-self adjoint. That is

( /Dψ1, ψ2)L2 = (ψ1, /Dψ2)L2

the formula for /DA is similar.

Proof. Let e1, ..., en be a geodesic orthonormal frame on TM , that isDeiej = 0, then
by (22) and remark 2.5 we have

( /Dψ1, ψ2)L2 =

∫
M

〈
n∑
i=1

ei · ∇eiψ1, ψ2

〉
x

dV = −
∫
M

n∑
i=1

〈∇eiψ1, ei · ψ2〉x dV

= −
∫
M

n∑
i=1

(
∂〈ψ1, ei · ψ2〉x

∂ei
− 〈ψ1,∇ei(ei · ψ2)〉x

)
dV

= −
∫
M

n∑
i=1

(
∂〈ψ1, ei · ψ2〉x

∂ei
− 〈ψ1, ei · ∇eiψ2〉x

)
dV

= (ψ1, /Dψ2)L2 −
∫
M

n∑
i=1

∂〈ψ1, ei · ψ2〉x
∂ei

dV

The second term in the last line looks likes a divergent of some vector field. Indeed, define
X ∈ Γ(TCM) by

X(x) =
n∑
i=1

〈ψ1, ei · ψ2〉x · ei
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then we find

divX =
n∑
i=1

∂g(ei, X)

∂ei
=

n∑
i=1

∂〈ψ1, ei · ψ2〉x
∂ei

hence by Cartan magic formula and Stokes theorem, due to the compactness ofM we have∫
M

n∑
i=1

∂〈ψ1, ei · ψ2〉x
∂ei

dV =

∫
M

divXdV =

∫
M

LXdV

=

∫
M

d (ιXdV )−
∫
M

ιXd(dV )

= 0

the proof of /DA is similar. ♣

2.4.2 Weitzenböck Formula

Another useful property of Dirac operator is a Bochner type formula, calledWeitzen-
böck formula. To formulate this formula, we need to introduce what is a connection Lapla-
cian first.

Recall that any connection∇ on E can be extended to E ⊗
∧k T ∗M by

∇ω ⊗ s = (Dω)⊗ s+ (−1)degωω ⊗∇s

where D is the extended Levi-Civita connection
∧k T ∗M , see example 2.5 (f). We can

regard Γ
(
E ⊗

∧k T ∗M
)
as Ωk(M ;E), i.e. k-forms with values in E, then the extended

∇ can be seen as a map

d∇ : Ωk(M ;E) −→ Ωk+1(M ;E)

in particular, there is a “de Rham-like complex”

· · · → Ωk−1(M ;E)
d∇−→ Ωk(M ;E)

d∇−→ Ωk+1(M ;E) −→ · · ·

this is indeed a complex if and only if∇ is flat.
Like what we do in Hodge theory, we can define a codifferential

d∗∇ = (−1)n(k−1)+1 ∗ ◦d∇ ◦ ∗ : Ωk(M ;E) −→ Ωk(M ;E)

Definition 2.10 (Connection Laplacian). Let (E,∇) be a bundle over (M, g) with a con-
nection∇, the operator

∇∗∇ : Γ(E) −→ Γ(E ⊗ T ∗M)
∇∗:=d∗∇
−−−−→ Γ(E)

is called the connection Laplacian. ♣
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The connection Laplacian has the following properties.

Theorem 2.6. (1) It has a local expression: let e1, ..., en be a group of orthonormal local frame
on TM , then

∇∗∇s = −
n∑
i=1

(
∇ei∇eis−∇Deiei

s
)

(23)

and this expression is independent of the choice of the frames.

(2) ∇∗∇ is formal self-adjoint, that is if there is a metric 〈·, ·〉 onE compatible with∇ in sense
of (22), then∫

M

〈∇∗∇s1, s2〉xvolM =

∫
M

〈∇s1,∇s2〉xvolM =

∫
M

〈s1,∇∗∇s2〉xvolM

The proof can be found in [2, 14] (or leave as an exercise).

Remark 2.7. Notice that in the local expression (23), the term −
∑
∇ei∇ei already looks

likes the usual Laplacian, but this form depends on the choice of basis, by minus the second
will kill this dependency. Obviously, if we choose ei’s to be the geodesic frame such that
Deiej = 0, then we see that the second term will be annihilated.

Theorem 2.7 (Weitzenböck Formula). Let (M, g) be a spin or Spinc bundle, let ∇ or ∇A be
the spin connection on the spinor bundle /SM .

(1) For /D, we have
/D
2
ψ = ∇∗∇ψ +

sg
4
ψ

(2) For /DA we have

/D
2
Aψ = ∇∗

A∇Aψ +
sg
4
ψ +

FA · ψ
2

Proof. For the first formula, since (23) is independent of choice of basis, we can take
e1, ..., en be the geodesic frame local frame on TM , hence by lemma 2.1 and remark 2.5 we
have

/D
2
ψ =

n∑
i=1

ei · ∇ei

(
n∑
j=1

ej · ∇ejψ

)
=
∑
i,j

ei · ej · ∇ei∇ejψ

= −
n∑
i=1

∇ei∇eiψ +
1

2

∑
i ̸=j

ei · ej ·
(
∇ei∇ej −∇ej∇ei

)
ψ

= ∇∗∇ψ +
1

2

∑
i,j

ei · ej ·Reiej(ψ)

= ∇∗∇ψ +
sg
4
ψ

Similarly, by lemma 2.1 (b) we can prove the second formula. ♣
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Remark 2.8. If dimM = 4 is a Spinc manifold, and let A be a connection on the determi-
nant line bundle L ∼= det /S+ = det /S−, recall that from example 2.5, the Dirac operator
on /S+ ⊕ /S− splits as /D

±
A, then for ψ ∈ Γ(/S+), the Weitzenböck formula reads as

/D
−
A
/D
+
Aψ = ∇∗

A∇∗
Aψ +

sg
4
ψ +

1

2
F+
A · ψ (24)

where F+
A ∈ Ω2

+

(
M ;
√
−1R

)
is the self-dual part of the curvature FA, it is due to remark

2.4 (iv) that an anti-self dual 2-form acts trivially on /S+. ♣

2.4.3 Atiyah-Singer Index Theorem

From now on, we assume (M, g) is compact oriented Riemannian manifold of even-
dimension (and in particular we will interest in the case dimM = 4). Recall that the Dirac
operator /D splits as

/D
±
: Γ
(
/SM±

)
−→ Γ

(
/SM∓

)
Definition 2.11. The index of the Dirac operator is defined as

Ind /D := Ind /D+
:= dim ker /D+ − dim ker /D−

the index of /DA is similar. ♣

The index of the Dirac operator is an analytic invariant, it measures how big is the
space of solutions of the linear elliptic PDE /Dψ = 0, the importance is that it is also a
topological invariant.

Theorem 2.8 (Atiyah-Singer). IfM is a 2n-dimensional Spinc manifold withL the determinant
line bundle, then for any connection A on L, the index of /DA is a topological invariant:

Ind /DA =

∫
M

Â(M)^ ch (L)

where Â is called the Hirzebruch class, ch(L) stands for the total Chern class.

Formore details aboutHirzebruch classes andChern-Weil theory can be found in [14].
The following example is the index of the Hodge operator d+δ on the exterior bundle∧

T ∗M , although it is not a spinor bundle, the example is good for us to understand what
does the index measure.

Example 2.6. The index of D = d+ δ can be defined as

IndD := dim kerD+ − dim kerD−

where
D+ : Ωeven(M ;R) −→ Ωodd(M ;R)
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we see that ω ∈ kerD if and only if ω is harmonic, and from Hodge theorem we know

dim kerD+ =
∑

dimH2k(M) =
∑

dimH2k(M ;R)

dim kerD− =
∑

dimH2k−1(M) =
∑

dimH2k−1(M ;R)

hence we find that

IndD =
n∑
k=1

(−1)k dimHk(M ;R) = χ(M)

which is a topological invariant. ♣

However, for this note, we will use a simpler formula for Spinc 4-manifolds.
Recall that when dimM = 4, the Hodge ∗−orperator decomposes the 2-forms into

the self-dual and anti-self-dual parts, hence there is a same decomposition on all harmonic
forms

H2(M) = H2
+(M)⊕H2

−(M)

Definition 2.12 (Signature). The signature of a 4-manifoldM is defined as

sgn(M) := b+ − b− = dimH2
+(M)− dimH2

−(M)

Theorem 2.9. The index of /DA on /SM = /S+⊕ /S− associated to Spinc structure on a 4-manifold
is

Ind /DA = −
∫
M

(
p1(M)

6
− c21(L)

2

)
= −sgn(M)

8
+

1

2

∫
M

c21(L)

whereL is the determinant line bundle of the Spinc structure, p1(M) = c2(TM ⊗C) is the first
Pontryagin class.

Here is an application of the index theorem, I refer to [14] for more interesting appli-
cations.

Theorem 2.10 (Linchnerowicz). If a compact oriented 4-manifold M is spin, then it admits a
Riemannian metric g with positive scalar curvature sg(x) > 0 only if its signature is zero.

Proof. Consider the Spinc structure which is twisted by a trivial line bundle L from
the original spin structure. Then by Example 2.1, we know that

c1(L) = c1(L) = 0

where /SM = /S+⊕ /S− is the spinor bundle associated to the spin structure. So by Atiyah-
Singer index theorem, we have

−sgn(M)

8
= Ind /DA
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Now, we pickA to be a trivial connection onL = L. Ifψ ∈ Γ(/S+⊗L) satisfies /D
+
Aψ = 0,

we have by Weitzenböck formula (24)

0 =
(
/D
−
A
/D
+
Aψ, ψ

)
L2

= (∇∗
A∇Aψ, ψ)L2 +

(sg
4
ψ, ψ

)
L2

+

(
F+
A · ψ
2

, ψ

)
L2

= ‖∇Aψ‖2L2 +
1

4

∫
M

sg(x)|ψ(x)|2volM

thus if sg(x) > 0 everywhere, there could only be ψ = 0, therefore Ind /DA = 0, that
yields sgn(M) = 0. ♣

By the same argument, we can prove a much stronger result:

Theorem 2.11. A compact 2n−dimensional spin manifoldM admits a Riemannian metric whose
scalar curvature is positive everywhere only if the Â-genus ofM is zero:

gÂ(M) =

∫
M

Â(M) = 0
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Part II: Seiberg-Witten Gauge Theory

3 Seiberg-Witten Equations

3.1 Definitions and Seiberg-Witten Maps

Now we can formulate what is a Seiberg-Witten equation. From this section (M, g)
will be a compact oriented Riemannian 4-manifold, and we only pick a Spinc structure
on it, the spinor will be denoted by /SM = /S+ ⊕ /S− and L = det /S+ = det /S− be its
determinant line bundle.

We shall first define a quadratic map µ on /S+.

Definition 3.1. For a ψ ∈ Γ(/S+), define

µ(ψ) = ψ ⊗ ψ∗ − |ψ|
2

2
Id ∈ /S+ ⊗ /S

∗
+
∼= End(/S+)

where ψ is the dual spinor of ψ in sense of the Hermitian metric. ♣

Remark 3.1. Since /S+ has complex rank 2, we can locally write ψ = (ψ1, ψ2), then µ
computes as

µ :

(
ψ1

ψ2

)
−→ 1

2

(
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2ψ̄1ψ2 |ψ2|2 − |ψ1|2
)
∈
√
−1su(/S+)

hence by remark 2.4 (iv), we regard µ(ψ) as a pure imaginary self-dual 2-form.

Definition 3.2. The Seiberg-Witten equation is an equation of (ψ,A) ∈ Γ(/S+)×A(L):{
/D
+
Aψ = 0

F+
A = µ(ψ)

(25)

Example 3.1. LetM = R4, let’s try to write down what a Seiberg-Witten equation looks
likes (or leave as an exercise). Well, in this case a spinor field with the positive chirality ψ
can be viewed as a quaternionic valued function on R4, and A = d + a a connection on
the line bundle L = R4 × C is simply

∑3
i=0 ai(x)dxi, by example 2.4 (18), we see that

those dxi’s acts on ψ by multiplying with 1, i, j, k respectively, thus (
√
−1 action inH can

be take as multiplying with i)

/D
+
Aψ = /D

+
ψ +

i

2
a · ψ

by example 2.5, we know that /D+ is just the Cauchy-Riemann operator, a ·ψ contains only
the products of components of ψ and a.

The second equation involves F+
A = da, which contains the 1st order linear partial

differentials of ai’s, and µ(ψ) is a 0th order non-linear term.
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Therefore, the Seiberg-Witten equation has the form

1st order linear derivatives+ 0th order non-linear terms = 0

which is a not extremely non-linear PDE. ♣

We can apply Weitzenböck formula to obtain a very coarse property of the solutions
of (25) .

Theorem 3.1. If the Riemannian 4-manifold (M, g) has positive scalar curvature, then every
solution of the Seiberg-Witten equation (25) has the form (0, A).

Proof. Assume (ψ,A) is a solution of (25), then by definition of µ, we have

〈µ(ψ)ψ, ψ〉 = 1

2
|ψ|4 (26)

thus by applying Weitzenböck formula (24), we have

0 =
(
/D
−
A
/D
+
Aψ, ψ

)
L2

= ‖∇Aψ‖2L2 +
1

2
(µ(ψ)ψ, ψ)L2 +

1

4

∫
M

sg|ψ|2volM

= ‖∇Aψ‖2L2 +
1

4

∫
M

|ψ|2
(
sg + |ψ|2

)
volM

hence if sg > 0 for all x ∈M , then there could only be ψ = 0. ♣
It is convenient to define the Seiberg-Witten map.

Definition 3.3. The Seiberg-Witten map is

SW : Γ(/S+)×A(L) −→ Γ(/S−)× Ω2
+(M ; iR)

(ψ,A) 7→
(
/D
+
Aψ, F

+
A − µ(ψ)

) (27)

We will denoted by C := Γ(/S+) × A(L) which is an infinite dimensional affine
space modeled on Γ(/S+)×Ω1(M ; iR) and V = Γ(/S−)×Ω2

+(M ; iR)which is an infinite
dimensional vector space Γ(/S−)× isu(/S+). Wee can also see that (ψ,A) solves (25) if and
only if SW (ψ,A) = 0, thus the space of solutions of the Seiberg-Witten equation is the
zero locus SW−1(0).

We can compute the tangent map of the Seiberg-Witten map.

Theorem 3.2. The tangent map d(ψ,A)SW is

d(ψ,A)SW : Γ(/S+)× Ω1(M ; iR) −→ V = Γ(/S−)× Ω2
+(M ; iR)

(Ψ, α) 7→
(
/D
+
AΨ+

1

2
α · ψ, (dα)+ − 2µ(ψ,Ψ)

)
(28)

where (dα)+ stands for taking self-dual part.
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Proof. Just a straightforward computation, since

γ(t) = (tΨ+ ψ,A+ tα) : I −→ C = Γ(/S+)×A(L)

is a parameterized curve with γ(0) = (ψ,A) and γ′(0) = (Ψ, α). Then the computation
runs as

d(ψ,A)SW (Ψ, A) =
d

dt

∣∣∣∣
t=0

SW (γ(t))

. ♣

3.2 Gauge Group Actions

The gauge group is Aut(L) ⊂ End(L) = M × C, hence the gauge group can be
regarded as

G = C∞(M ;U(1))

Recall that by remark 2.3, a g ∈ G acts on a section s on L by g · s = g2s, thus G acts on
A(L) by

A · g = 2g−1dg + A

We define the whole gauge group action on C by

(ψ,A) · g :=
(
g−1ψ,A · g

)
Lemma 3.1. The space of solutions of (25) SW−1(0) is gauge invariant under G action. It is
equivalent to say the Seiberg-Witten map is G−equivariant:

C = Γ(/S+)×A(L) V = Γ(/S−)× Ω2
+(M ; iR)

C V

SW

↶G G↷

SW

where G acts on V by multiplying g−1 on the first faactor and trivially on the second.

Proof. Let g ∈ G, we have

/D
+
A·g(g · ψ) = /D

+
A+2g−1dg

(
g−1ψ

)
= /D

+
A

(
g−1ψ

)
+ g−2dgψ

=
(
dg−1

)
· ψ + g−1 /D

+
Aψ

= g−1 /D
+
Aψ = g ·

(
/D
+
Aψ
)

For F+
A·g, we notice that G is Abelian, thus the gauge transformation doesn’t change the

curvature hence F+
A·g = F+

A . And since |g| = 1, thus by definition of µ we also have
µ (g−1ψ) = µ(ψ), thus we obtained

SW ((ψ,A) · g) = g · SW (ψ,A)

which proves the equivariancy. ♣
Now, we can define what is the Seiberg-Witten moduli space.
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Definition 3.4. The Seiberg-Witten moduli space is the solutions of (25) modulo the gauge
equivalency:

MSW := SW−1(0)/G

Also notice that, the G-action is non-free 19 at (ψ,A) precisely ifψ = 0, thus we can define
the moduli space for irreducible solutions

Mirr
SW :=

{
(ψ,A) ∈ SW−1(0)|ψ 6= 0

}
/G

. ♣

However, one shall never expect SW−1(0) is a smooth submanifold of an infinite
dimensional affine space C since SW may not intersect transversally with 0, hence one
shall never expectMSW orMirr

SW is smooth. In next section, we will discuss how deal
with the “transversality” problem.

19A G action at x ∈ M is called free if the stabilizer Gx ⊂ G is trivial. It means the G-orbit at a free
point just looks likes G it self. Hence consequently, if we can take an open subset U of a manifoldM such
that each point inU is a free point of theG-action, then the union of all orbits throughU looks likesU×G,
it defines a coordinate chart in the quotient spaceM/G. Therefore, ifG-action is free everywhere, the orbit
spaceM/G is a manifold, and the quotient map π :M −→M/G provides thatM is a principalG-bundle
overM/G.
In general, that U such that π−1(U) = U ×G is called a slice.
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4 Seiberg-Witten Moduli Spaces

This section aims to introduce threemain properties of Seiberg-Wittenmoduli spaces.
The first remarkable property is thatMSW is compact in C∞-topology (i.e. the space
for non-equivalent smooth solutions is compact). The second property is that SW can be
perturbed by a very small parameter η so that SWη intersects transversally with 0. The third
property is that we can give an orientation on the moduli spaces.

4.1 Compactness ofMSW

We wish to proveMSW is a compact moduli space in sense of C∞−topology. Our
strategy will be as follows:

• C∞−topology is a bit strong, we will first replace it by a slightly weaker topology,
induced by the Sobolev normW k,2. Here we shall take k sufficiently large (k = 5 for
instance) so that some definitions work. The moduli space ofW 5,2−solutions will
be denoted byM5,2

• Then, we will show all solutions of (25) are (up to a gauge equivalence) actually
bounded in W 6,2-norm. Actually, they are (up to a gauge equivalence) bounded
in anyW k,2-norm, for k ≥ 0.

• Apply Sobolev embedding theorem (W k+1,2 ↪→ W k,2 is compact embedding) we
know thatM5,2 is compact. Since for a sequence {(ψn, An)} in C5,2 ∩ SW−1(0),
we know that it is gauge equivalent to a sequence which is bounded inW 6,2−norm,
hence by Sobolev embedding (cf. Theorem 4.1), there is a subsequence which is con-
vergent inW 5,2−norm, then by definition (of sequential compactness) the moduli
spaceM5,2 is compact.

• By upgrading k to any k ≥ 0, we can show thatMSW is compact under C∞-
topology.

With this strategy in mind, let’s start from the Sobolev completions.

4.1.1 Sobolev Completions

Recall that the space Γ(/S+) admits an Hermitian L2-norm

‖ψ‖2L2 :=

∫
M

〈ψ, ψ〉xvolM =

∫
M

|ψ(x)|2volM

we can define its Sobolev norm by

‖ψ‖2Wk,2 =
k∑
i=0

∥∥∇i
Aψ
∥∥2
L2 =

∫
M

k∑
i=0

∣∣∇i
Aψ
∣∣2 volM

where∇A is the spin connection, it acts on ψ can be viewed as acting on (ψ, 0) ∈ Γ(/SM).
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The Sobolev completion of Γ(/S+) underW k,2-norm is denoted by

W k,2(/S+) :=
(
Γ(/S+), ‖ · ‖Wk,2

)
It is a Banach space.

Similarly, by Hodge theory, we know there is an L2-norm on Ωp(M ;R), defined by

‖ω‖2L2 =

∫
M

ω ∧ ∗ω

Its SobolevW k,2-norm is defined by

‖ω‖2Wk,2 :=
k∑
i=0

∥∥Diω
∥∥2
L2

where D is the induced Levi-Civita connection on
∧p T ∗M . The sobolev completion of

Ωp(M ;R) will be denoted by:

W k,2
(∧k

M ⊗ R
)
:= (Ωp(M ;R), ‖ · ‖Wk,2)

Notice that after picking a frame pointA0, the space of connectionsA(L) is an affine
space modeled on Ω1(M ; iR):

A(L) = A0 + Ω1(M ; iR)

we can also define theW k,2−Sobolev completion onA(L), denoted byAk,2(L).
Let

Ck,2 =
{
(ψ,A) ∈ C|(ψ,A) ∈ W k,2(/S+)×Ak,2(L)

}
be the Banach affine space, and

Kk,2 =
{
(ψ,A) ∈ Ck,2|SW (ψ,A) = 0

}
It is also possible to give a Sobolev completion on G = C∞(M ;U(1)), denoted by

Gk,2, however, from Sobolev multiplication theorem 4.1, we know that it is a Banach Lie
group whenever k ≥ 3.

Here are the fundamental theorems of Sobolev spaces:

Theorem 4.1. Let M be an n-dimensional manifold, E −→ M an Euclidean vector bundle.
W k,p(E) is theW k,p−Sobolev completion of Γ(E), then
(1) If s ∈ W k,p(E), then s ∈ W ℓ,q(E), where

k − ` ≥ n

(
1

p
− 1

q

)
≥ 0

and there exists a constant C > 0 such that

‖s‖W ℓ,q ≤ C‖s‖Wk,p

It is equivalent to say there is a continuous embedding

j : W k,p(E) ↪→ W ℓ,q(E)
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(2) (Sobolev Embedding Theorem) If

k − ` ≥ n

(
1

p
− 1

q

)
> 0

then the embedding j is compact.

(3) If k − n
p
> r, then there is a continuous embedding

W k,p(E) ↪→ Cr(E)

If s ∈ W k,p for some fixed p but for all k ≥ 0, then s is smooth.

(4) (Sobolev Multiplication Theorem)

• If kp > n, then the Banach spaceW k,p(M ;R) is a Banach algebra.
• If kp < n, then we have a bounded map

W k1,p1 ⊗W k2,p2 −→ W k,p

whenever
k1 −

n

p1
+ k2 −

n

p2
≥ k − n

p

Here are the main analytic properties of the operator /DA and F
+
A .

Theorem 4.2. Let A0 ∈ A(L) be fixed.

(1) (Elliptic Estimation) The Dirac operator /DA0
is a 1st order elliptic operator, it satisfies the

elliptic estimation

‖ψ‖Wk+1,2 ≤ C
(
‖ /DA0

ψ‖Wk,2 + ‖ψ‖L2

)
(2) (Gauge Fixing Lemma) For any A ∈ A(L), there exists a gauge transformation g ∈ G

with A · g = A0 + α such that{
δα = 0

‖α‖Wk,2 ≤ C1‖F+
A ‖Wk−1,2 + C2

The proof of (1) is due to the fact that all elliptic operators satisfying the elliptic
estimations. The proof of the second statement can be found in [2, lemma 5.3.1] (or leave
as an exercise).
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4.1.2 Proof of the Compactness

Following the proving strategy listed at the beginning, we now focus on the solu-
tions in K5,2. We will show that all W 5,2-solutions (ψ,A) are uniformly bounded in
W k,2−norm for all k ≥ 0.

Lemma 4.1. There exists a constant C > 0 (which only depends on the geometry of (M, g) and
not depends on the choice of (ψ,A)) such that for all (ψ,A) ∈ C5,2

‖ψ‖Lp ≤ C

Proof. We shall first prove it for C0−norm:

‖ψ‖C0 = sup
x∈M
|ψ(x)| ≤ C

Choose x0 ∈ M be a maximal value of |ψ|2 (since M is compact). Let e1, ..., en be the
geodesic local frame on Tx0M , then by (22), (23), (26) and Weitzenböck formula (24) we
have at x0:

0 ≤ 4|ψ|2 = −
4∑
i=1

∂

∂ei

∂〈ψ, ψ〉
∂ei

= −2
4∑
i=1

∂
〈
∇Aei

ψ, ψ
〉

∂ei

= −2
4∑
i=1

(〈
∇Aei

∇Aei
ψ, ψ

〉
+
∣∣∇Aei

ψ
∣∣2)

= 2 〈∇∗
A∇Aψ, ψ〉 − 2 |∇Aψ|2

= 2
〈
/D
−
A
/D
+
Aψ, ψ

〉
− sg(x0)

2
|ψ|2 −

〈
F+
A · ψ, ψ

〉
− 2 |∇Aψ|2

= −sg(x0)
2
|ψ|2 − 1

2
|ψ|4 − 2 |∇Aψ|2

hence we obtained

sg(x0) + |ψ(x0)|2

2
|ψ(x0)|2 ≤ −2 |∇Aψ|2 | ≤ 0

thus
|ψ(x0)|2 ≤ −sg(x0) := C

Consequently we have

‖ψ‖pLp :=
∫
M

|ψ|pvolM ≤
∫
M

|ψ(x0)|pvolM

≤ Cpvol(M)

which ends the proof. ♣
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Lemma 4.2. For any solution (ψ,A) of (25) we have

‖F+
A ‖L2 ≤ C, ‖F−

A ‖L2 ≤ C − 4π2c21(L)

where
c21(L) :=

∫
M

c1(L)^ c1(L)

Proof. The first inequality follows directly from lemma 4.1, as for the second one,
notice that by Chern-Weil theory

c1(L) =
i

2π
Tr(FA) =

i

2π
FA

hence
c21(L) = −

1

4π2

∫
M

FA ∧ FA

= − 1

4π2

∫
M

(
F+
A + F−

A

)
∧
(
F+
A + F−

A

)
= − 1

4π2

(∥∥F+
A

∥∥2
L2 −

∥∥F−
A

∥∥2
L2

)
which yields the desired result. ♣
Lemma 4.3. For each k ≥ 0, there exits a constant Ck > 0 such that for any solution (ψ,A) ∈
C5,2, there exists a gauge transformation g ∈ Gk+1,2 with A · g = A0 + α such that

‖(ψ, α)‖Wk,2 ≤ Ck

Proof. We can prove by induction, however we need to establish for some small k until
k = 4 so that the Sobolev multiplication theorem can be used.

• For k = 0, the result follows directly from lemma 4.1.
• For k = 1, by gauge fixing lemma and lemma 4.2, there exists a g ∈ G2,2 with
A · g = A0 + α such that

‖α‖W 1,2 ≤ C1

∥∥F+
A

∥∥
L2 + C2 ≤ C ′

thus α ∈ W 1,2.

As for ‖ψ‖W 1,2 , note that by Sobolev multiplication g · ψ is still ofW 0,2 = L2, to
avoid the abused using of notations, which will still be denoted by ψ, hence by (25),
we have

0 = /D
+
Aψ = /D

+
A0
ψ +

α · ψ
2

hence again by Sobolev multiplication theorem, we have

/D
+
A0
ψ = −α · ψ

2
∈ W 0,2(/S+) = L2(/S+)

by elliptic estimation and lemma 4.1, we have

‖ψ‖W 1,2 ≤ C
(∥∥∥ /D+

A0
ψ
∥∥∥
L2

+ ‖ψ‖L2

)
≤ C ′
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• For k = 2, in order to establish an estimation on ‖α‖W 2,2 weneed to study
∥∥F+

A

∥∥
W 1,2

by gauge fixing lemma, which entails to study
∥∥DF+

A

∥∥
L2 .

We still use ∇A for the induced spin connection on End(/S+) ⊃ su(/S+). By defi-
nition, we have

DF+
A = ∇Aµ(ψ) = ∇A

(
ψ ⊗ ψ∗ − |ψ|

2

2
Id
)

= (∇Aψ)⊗ ψ∗ + ψ ⊗∇Aψ
∗ −

(
n∑
i=1

〈∇Aei
ψ, ψ〉

)
Id

since ψ ∈ W 1,2, by applying triangle inequality we have∥∥DF+
A

∥∥
L2 ≤ C‖∇Aψ‖L2 · ‖ψ‖L2 ≤ C ′

thus F+
A ∈ W 1,2, by gauge fixing lemma we can prove α ∈ W 2,2 for some A · g =

A0 + α.

Again, by Sobolev multiplication we can show that

/D
+
A0
ψ = −α · ψ

2
∈ W 1,2(/S+)

by applying elliptic estimation again, we have

‖ψ‖W 2,2 ≤ C
(∥∥∥ /D+

A0
ψ
∥∥∥
W 1,2

+ ‖ψ‖L2

)
≤ C ′

• The proof for k = 3 is similar, just computeD2F+
A and by applying our previously

results.
• Now, we can start the induction, suppose the result holds till to some k ≥ 4, by
Sobolev multiplication we have

F+
A = µ(ψ) ∈ W k,2

(∧2

+
T ∗M ⊗ iR

)
hence by gauge fixing lemma, there exits some g ∈ Gk+2,2 provides A · g = A0 + α
such that

‖α‖Wk+1,2 ≤ C1

∥∥F+
A

∥∥
Wk,2 + C2 ≤ C ′

The same as before, by applying elliptic estimation, we conclude that (ψ, α) ∈
W k+1,2.

That ends the proof. ♣
As was stated in the beginning strategy, we have

Lemma 4.4. The moduli spaceM5,2 = K5,2/G6,2 is compact.
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As the consequence of theorem 4.1 (3) and lemma 4.3, we obtained

Theorem 4.3. Every solution (ψ,A) ∈ K5,2 can be gauge transformed to a smooth solution
(ψ,A) · g ∈ SW−1(0) for some g ∈ G6,2. Moreover,MSW is compact under C∞-topology.

Proof. Just show that for each K5,2-solution (ψ,A) there exists a g ∈ G6,2 such that
(ψ, α) is inW k,2 for all k ≥ 0 (be careful that, different from lemma 4.3, where g ∈ Gk,2
depends on k), where A · g = A0 + α.

By lemma 4.3, we know that if (ψ,A) is a K5,2 solution, ψ is in W k,2 for all k ≥
0, hence ψ is smooth. And by Sobolev multiplication

∥∥F+
A

∥∥
Wk,2 = ‖µ(ψ)‖Wk,2 is also

bounded below for all k ≥ 0, hence by lemma 4.2 FA = F+
A + F−

A is smooth. Notice that
if we denote A · g = A0 + α for some g ∈ G6,2 we have

FA = FA·g = FA0 + dα

don’t forget δα = 0, we have

(d+ δ)α = FA − FA0 = dα

thus dα is smooth, hence so is α.
To showMSW is smooth underC∞ topology, it suffices to show that for any sequence

(ψn, An) inMSW , there exists a subsequence (ψnk , Ank) converges inW
k,2-norm for all

k ≥ 0.
Since (ψn, An) is bounded below inW 6,2−norm, there exists a subsequence (ψni , Ani)

which converges inW 5,2−norm after applying a gauge transformation in G6,2. And since
(ψni , Ani) is also in W

7,2, we can choose a subsequence which converges in W 6,2-norm
(after applying a gauge transformation in G7,2), keep doing this process, and by the choice
axiom we can pick the diagonal subsequence which is converge in anyW k,2-norm. ♣

4.2 Smoothness

Aswas stated at the beginning of this section, if we can show thatSW−1(0) is smooth,
then at least Mirr

SW is a smooth manifold. However, although SW may not intersect
transversally with 0, we can perturb it by a small constant η ∈ W k,2

(∧2
+ T

∗M ⊗ iR
)

so that good thing happens. In order to do so, we need to establish an∞−dimensional
Thom-Smale theorem.

4.2.1 FredholmTheory

Let’s start from the general Fredholm theory. Let X,Y be two∞−dimensional Ba-
nach manifolds, F : X −→ Y is a smooth map

Definition 4.1 (Fredholm map). Let y = F (x) ∈ Y , the smooth map F is said to be
Fredholm if (dF )x;TxX −→ TyY is a Freholm map for all x, that is

(i) dim ker(dF )x <∞
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(ii) dim (Y /Im(dF )x) <∞, that is its cokernel is of finite dimensional.
(iii) Im(dF )x is closed 20 in Y .

IfX is connected, there is a well-defined index of a Fredholm map, which is defined by

IndF := dim ker(dF )x − dim coker (dF )x

. ♣

A very important class of Fredholm maps is:

Theorem 4.4. Every elliptic operator of order `

D : W k,2(M ;E) −→ W k+ℓ,2(M ;E)

is a Fredholm operator. Hence in particular, the Dirac operator /D or /DA are Fredholm, and the
Fredholm index equals to the index as elliptic operators.

In what follows, we always assumeX,Y are connected.
The Fredholmmaps in∞−dimensional differential topology have a lot of good prop-

erties as the smooth maps in finite-dimensional topology. For example, the Sard theorem.

Theorem 4.5 (Sard-Smale-Kuranishi). Assume F : X −→ Y is a Fredholm map.

(i) If 0 ∈ Y is a regular value, i.e. (dF )x is surjective for all x such that F (x) = 0, then
F−1(0) ⊂ X is a smooth submanifold of dimension IndF .

(ii) IfX,Y are both paracompact, then the set of regular values of F is a subset in Y of second
category, in particular dense.

If the Fredholm map F has index 0 and is also proper, then for a regular value 0,
F−1(0) is compact 0-dimensional manifold, i.e. finite points. It allows us to define what
is a Z2−mapping degree.

Lemma 4.5. (a) For any two regular values y1, y2 ∈ Y of F, we have the modulo 2 cardinality

#F−1(y2) = #F−1(y2) mod 2

this Z2−integer is called the Z2−degree of F , denoted by deg2 F .

(b) For two homotopic Fredholm maps F1, F2, i.e. they were joined by a Fredholm path in
C∞(X;Y ), then

deg2 F1 = deg2 F2

A more generalized notion of regular values is the transversality.

20In fact, (i) & (ii) implies (iii).
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Definition 4.2 (Transversality). Let Z ⊂ Y be a smooth finite dimensional submanifold, a
map F : X −→ Y is said to be transverse to Z if for any z ∈ Z and x ∈ F−1(z), we have

Im(dF )x + TzZ = TzY

denoted by F ⋔ Z . ♣

Of course, if every z ∈ Z is a regular value of F then F ⋔ Z , but the reverse side is
not necessarily true. Like in the finite dimensional differential topology, we have

Theorem 4.6. Suppose F : X −→ Y is Fredholm, Z ⊂ Y is a finite dimensional submanifold
and F ⋔ Z , then F−1(Z) is a smooth submanifold inX with the dimension

dimF−1(Z) = IndF + dimZ

Next important question is to generalize the Thom-Smale theorem: For a given sub-
manifold Z ⊂ Y , are the Fredholm maps such that F ⋔ Z generic enough?

To answer this question, we consider a family of Fredholmmaps {Fw} parameterized
in a connected Banach spaceW , i.e. a Fredholm map

F : X ×W −→ Y

such that for each parameter w ∈ W , F(x,w) := Fw is Fredholm. An analogously result
of Thom-Smale theorem reads:

Theorem 4.7. Let y ∈ Y be a regular value ofF , then there is subsetW0 ⊂ W of second category
(hence dense) such that y is a regular value of Fw0 for each w0 ∈ W0.

That is to say, if for a Fredholm map F = Fw0 , the value y ∈ Y may fail to be a
regular value for F , but we can always perturb F slightly in the parameter spaceW so that
the perturbed Fw is very close to F and regular at y.

Now, if we assume in addition that Fw is proper for each w, and IndF = 0, we can
compute the Z2-mapping degree of F = Fw0 at any value y by

deg2 F := deg2 Fw = #F−1
w (y) mod 2

where the Fw was chose to be perturbed to be regular at y. But there is a natural question:
what if one chooses a different perturbation Fw′?

Lemma 4.6. Let F and Fw0 = F be defined as above. IfW is connected, for any two w1, w2 ∈
W such that y ∈ Y is a regular of Fwi , i = 1, 2, then

deg2 Fw1 = deg2 Fw2

Proof. SinceW is connected, we can choose a path γ : [0, 1] −→ W joining them, i.e.
γ(0) = w1, γ(1) = w2. Then for each γ(t), F|X×{γ(t)} = F(x, γ(t)) defines a homotopy
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between Fw1 and Fw2 , then by homotopic invariance of Z2-degree (cf. Lemma 4.5 (b)), the
desired result yields. ♣

Next, we wish to give an orientation on F−1(y) (y is regular) so that we can define
a Z−valued degree. Recall that an n-dimensional manifoldM is orientated if and only if
the determinant line bundle

∧n TM is trivial. Hence for an index d Fredholm map F , we
can also study the

∧d TF−1(y) to give an orientation of F−1(y).
To do this, notice that for x ∈ F−1(y), the tangent space is actually

TxF
−1(y) = ker(dF )x

However, in practice, it’s convenient for us to define:

Definition 4.3. The determinant line bundle determined by a Fredholm map F : X −→ Y is

detF :=
∐
x∈X

( top∧
ker(dF )x ⊗

top∧
coker(dF )x

)
−→ X

Lemma 4.7. The line bundle detF defined in definition 4.3 is indeed a locally trivial real line
bundle overX .

A proof can be found in [15, Appendix A.2.2].
Hence we see that if detF is a trivial line bundle, then for any regular value y, F−1(y)

is an oriented submanifold. In particular, ifX,Y are Banach spaces and F is a linear Fred-
holm map, then detF is obviously trivial.

Now, for the perturbed case F : X ×W −→ Y , whereW is a connected Banach
manifold, and let Fw = F(x,w). Notice that for two parameters w1, w2 ∈ W , there
exists a path γ(t) joining them, thus F(x, γ(t)) defines a homotopy between Fw1 and
Fw2 . Moreover, we have

Lemma 4.8. detFw1 is trivial if and only if detFw2 is trivial.

With this inmind, we can define what is theZ−valuedmapping degree of a Fredholm
map F : X −→ W . Recall that if F is proper and IndF = 0 then F−1(y) is just a finite
set for y regular. If detF is in additional trivial, then an orientation in F−1(y) means
there is a well-defined sign ±1 on each element in F−1(y), we define degF to be the
signed counting of its cardinality.

If y is not a regular value, then we can choose a perturbation F : X ×W −→ Y
with F = Fw0 for some w0 ∈ W , then by Thom-Smale theorem 4.7, we can choose a
generic w so that y is a regular value of Fw . Now, if we assume in additional that such
a perturbation was chose such that detFw is trivial for all w ∈ W , then F−1

w (y) is an
oriented 0-dimensional compact manifold, i.e. finitely many points with a sign, we define

degF := degFw

By lemma 4.8 we know that the result doesn’t depend on the choice of the perturbation
Fw .

Like lemma 4.5, we have

Lemma 4.9. The Z-valued mapping degree degF is independent of the choice of regular value
y ∈ Y and it is homotopic invariant.
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4.2.2 Transversality and Perturbed Smoothness

One cannot expect neither 0 is a regular valued of SW nor SW is Fredholm21. Hence
we need a bit more work to apply the Fredholm theory.

Indeed, there is a classical method to deal with this problem, let me introduce it here.
Let µ : C −→ V be a smooth map between Hilbert manifolds (where C is affine and

V is linear in our situation) which may be not Fredholm, moreover, C and V both endows
with a G-action and µ is assumed to be G−equivariant. Let 0 ∈ V be a fixed point of the
G−action, but it might be not a regular value of µ. We wish to study the smoothness of
the quotient space µ−1(0)/G :=M, the so-called moduli space. However, there are several
problems which may cause the bad behaviors ofM.

• µ−1(0) may not be smooth, since 0 may not be a regular value of µ.
• Even if µ−1(0) is smooth, G-action on µ−1(0) may not be free 22.
• Even if G acts freely on µ−1(0),M still may fail to be smooth, since µ−1(0) may of
infinite dimensional (µ may be not Fredholm).

• One may very hard to find a slice Sx at each point x ∈ µ−1(0), so that those slices
provide the coordinate charts onM.

Then, we aim to discuss a parameterized smoothness with the following objectives:

(i) Introduce a parameter space W and define a perturbed map F : C ×W −→ V ,
such that µ = F(·, η0) for some η0 ∈ W , and 0 is a regular value of F (this F is
not necessarily Fredholm either).

(ii) For generic η ∈ W , µη = F(·, η) is regular at 0 so that µ−1
η (0) is smooth.

(iii) For each x ∈ µ−1
η (0) there is a slice Sx so that one can deduceMη := µ−1

η (0)/G is
smooth.

(iv) For different η1 and η2, the moduli spacesMη1 andMη2 are cobordant equivalent.

The most difficult part is obtaining the “generic property” in (ii), our method in here
is to use an elliptic complex. Here are the detailed approaches.

(1) For each x ∈ µ−1
η (0) ⊂ C, consider the following deformation complex:

0 −→ Lie(G) Rx−→ TxC
(dµη)x
−−−→ V −→ 0

where Rx(ξ) := ξ(x) means evaluation at x of the fundamental vector field deter-
mined by ξ ∈ Lie(G). This is indeed a complex due to the equivariancy and 0 is a
fixed point:

(dµη)x ξ(x) = ξ (µη(x)) = 0
21Actually, it is a Fredholm part plus a compact part.
22Recall that ifM is compact and of finite dimensional, then for every free compact Lie group G-action,

M/G is a smooth manifold. Indeed, for any orbit G · x ∈ M/G, by Kozul’s slice theorem [16], there exists a
G−equivariant tubular neighborhood Vx of the orbit G · x, such that Vx is equivariantly diffeomorphic to
a tubular neighborhood of the zero section of the normal bundle ofG · x, thus such a Vx forms a slice inM ,
henceM/G is a smooth manifold (with coordinates provided by these Vx).
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(2) Notice that the ker (dµη)x is precisely Txµ
−1
η (0), hence the 1st cohomology group

of this complex is
H1 := TxMη

(3) Since C,V are Hilbert manifolds, we can consider the following map:

Dη
x :=

(
R∗
x, (dµη)x

)
: TxC −→ Lie(G)⊕ V

where R∗
x : TxC −→ Lie(G) is the dual map of Rx.

We shall notice that kerR∗
x = (ImRx)

⊥, hence

kerDη
x = kerR∗

x ∩ ker((dµη)x)
= (ImRx)

⊥ ∩ Txµ−1
η (0)

∼= H1 ∼= TxMη

(29)

(4) Also notice that ImR∗
x = (kerRx)

⊥, hence if G acts freely on µ−1
η (0) then R∗

x is
also surjective. Under this assumption, we see that 0 is a regular value of µη if and
only ifDη

x is also surjective.
(5) Thus if we can show in additional that Dη

x is a Fredholm operator, then for generic
η ∈ W , we have µ−1

η (0) is smooth.

To sum up, we obtain the following:

Theorem 4.8. If the perturbation F : C ×W −→ V of µ satisfying the following:

(a) 0 is a regular value of F .
(b) G acts freely on µ−1

η (0) for each η.

(c) For each η and x ∈ µ−1
η (0), there exists a G-slice Sx.

(d) Dη
x is a Fredholm operator of index d for each η.

Then for generic η ∈ W , the moduli spaceMη is a smooth manifold of dimension d, and ifW is
connected, two different perturbed moduli spaces are cobordant.

Now, let’s deal with the Seiberg-Witten map. For simplicity, we shall only consider
the irreducible solutions C5,2irr so that theorem 4.8 (b) will hold.

Definition 4.4. The perturbed Seiberg-Witten map SW is

C5,2irr ×W 4,2
(∧2

+
T ∗M ⊗ iR

)
−→ V4,2 = W 4,2(/S−)⊕W 4,2

(∧2

+
T ∗M ⊗ iR

)
(ψ,A, η) 7→

(
/D
+
Aψ, F

+
A − µ(ψ)− η

)
Lemma 4.10. 0 is a regular value of SW , hence it satisfies Theorem 4.8 (a).
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Proof. Notice that

pr2
∂SW
∂η

= −Id : W 4,2
(∧2

+
T ∗M ⊗ iR

)
−→ W 4,2

(∧2

+
T ∗M ⊗ iR

)
is surjective, to show d(ψ,A,η)SW is surjective for SW(ψ,A, η) = 0 it suffices to show

T := pr1d(ψ,A)SWη : T(ψ,A)C5,2irr −→ W 4,2(/S−)

is surjective for each η. It suffices to show (ImT )⊥ is zero.
By (28), we know that

T (Ψ, α) = /D
+
AΨ+

α · ψ
2

Now, if ϕ ∈ (ImT )⊥ which is non-zero, then we have〈
ϕ, /D

+
Ψ+

α · ψ
2

〉
= 0 (30)

for all (Ψ, α) ∈ T(ψ,A)C5,2irr . In particular, let α = 0, we have

0 =
〈
/D
+
AΨ, ϕ

〉
=
〈
Ψ, /D

−
Aϕ
〉
==⇒ /D

−
Aϕ = 0 (31)

Similarly, if we let Ψ = 0 in (30), then we have for all α ∈ W 5,2(T ∗M ⊗ iR):

〈α · ψ, ϕ〉 = 0 (32)

Since ψ satisfies /D
+
Aψ = 0, by the rigidity property 23, there exists an open subset

U ⊂ M such that ψ does not vanish on U . By the property of spin representation and
(32), for any α supports on U , one always have

〈α · ψ, ϕ〉 = 0

hence ϕ almost vanishes on U , but by (31), applying again the rigidity property on ϕ, we
conclude that ϕ = 0 onM . ♣

Lemma 4.11. For each η ∈ W 4,2, and each (ψ,A) ∈ SW−1
η (0), there exits a slice defined by

(ψ,A) + kerR∗
(ψ,A)

thus the perturbed map SW satisfies Theorem 4.8 (c).

23TheDirac operators are somehow a generalization of the Cauchy-Riemann operators, so the spinor field
ψ with /Dψ = 0 should satisfy the rigidity property as the holomorphic functions.
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Proof. Note that 24

S(ψ,A) := (ψ,A) + kerR∗
(ψ,A) = (ψ,A) +

(
ImR(ψ,A)

)⊥
and since C5,2irr is affine and G6,2 acts freely on it, it suffices to check

T(ψ,A)S(ψ,A) ⋔ ImR(ψ,A)

and it is indeed the case. ♣

Lemma 4.12. The operatorDη
(ψ,A) := (R∗

(ψ,A), d(ψ,A)SWη) is an elliptic operator for each η ∈
W 4,2, hence Theorem 4.8 (d) is also satisfied. Moreover, its index is

IndDη
(ψ,A) =

c21(L)− 2χ(M)− 3sgn (M)

4

where L is the determinant line bundle of the Spinc structure onM .

Proof. By definition we can check that the deformation complex

0 Lie (G6,2) T(ψ,A)C5,2irr V4,2 0

C6,2(M ; iR) W 5,2
(
/S+ ⊕

(∧2
+ T ∗M ⊗ iR

))
W 4,2

R(ψ,A) d(ψ,A)SWη

is elliptic, henceDη
(ψ,A) :=

(
R∗

(ψ,A), d(ψ,A)SWη

)
is elliptic, in particular Fredholm.

By a straightforward computation, we have

R∗
(ψ,A)(Ψ, α) = 2δα + iRe〈ψ, iΨ〉

therefore, we can writeDη
(ψ,A) as

Dη
(ψ,A) =

(
/D
+
A

d+ + δ

)
+B := D0 +B

where B is a zeroth order operator. We can define D0 + Bt a homotopy between Dη
(ψ,A)

andD0, hence we have

IndDη
(ψ,A) = IndD0 = Ind /D

+
A + Ind (d+ + δ)

24By a direct computation, we find that for any ξ ∈ Lie(G) ∼= C∞(M ; iR):

R(ψ,A)ξ = ξ(ψ,A) =
d

dt

∣∣∣∣
t=0

(
e−tξψ,A+ 2e−tξtetξdξ

)
= (−ξψ, 2dξ)
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By Atiyah-Singer index theorem 2.9 we have:

Ind /D
+
A =

c21(L)− sgn(M)

8

and by example 2.6 we have

Ind (d+ + δ) = b1 − b0 − b+2 =
χ(M)− sgn(M)

2

where b+2 is the dimension of self-dual parts ofH
2(M ;R). ♣

Hence by theorem 4.8 we have:

Theorem 4.9. For generic η ∈ W 4,2
(∧2

+ T
∗M ⊗ iR

)
, the perturbed moduli space

Mirr
η :=

{
(ψ,A) ∈ C5,2|SW(ψ,A, η) = 0, ψ 6= 0

}
is smooth of dimension

dimMirr
η =

c21(L)− 2χ(M)− 3sgn (M)

4

However, when we only talk about the irreducible solutions,Mirr
η loses the compact-

ness, to deal with this problem, we need to add a topological restrain:

Theorem 4.10. If b+2 ≥ 1, then for generic η ∈ W 4,2, the solutions of SWη(ψ,A) = 0 are
all irreducible, hence under this assumption, for generic η, the moduli spaceMη is smooth and
compact.

Proof. Indeed, pick a reference point A0 ∈ A(L), consider

Q = F+
A0

+ Imd+ ⊂ W 4,2
(∧2

+
T ∗M ⊗ iR

)
This is a subspace of codimension b+2 ≥ 1, in particular Qc is dense. Now if η ∈ Qc, we
see that any solutions of SWη(ψ,A) = 0 one never has ψ = 0. ♣

4.3 Orientation

Now, we always assume b+2 ≥ 1. As was discussed in § 4.2.1, we hope to establish a
determinant line bundle of TMη, by checking the triviality of this bundle we can detect
the orientation ofMη .

From (29) we know that it suffices to check the detDη
(ψ,A). Due to lemma 4.8, we

know that it suffices to check the triviality of detD0. In fact, we have

detD0 = det /D+
A ⊗ det(d+ + δ)

since both /D
+
A and d

+ + δ are linear, we know that detD0 is trivial. To sum up, we have
showed

Theorem 4.11. If b+2 ≥ 1, then for generic η ∈ W 4,2, the perturbed Seiberg-Witten moduli space
Mη is a smooth compact oriented manifold. For two different perturbations η1, η2, the moduli
spacesMη1 andMη2 are cobordant equivalent.
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4.4 Seiberg-Witten Invariants

Now, we can define a numerical invariant of 4-manifoldM , the celebrated Seiberg-
Witten invariant.

Pickm ∈M , consider the based gauge group:

G0 := {g ∈ G|g(m) = 1}

then we have a short exact sequence of Lie groups

1 −→ G0 ↪→ G
evm−→ U(1) −→ 1

where evm means evaluation atm.
The quotient space

M̂η := SW−1
η (0)/G0

is called the framed moduli space. It equips with a free U(1)−action, and M̂η/U(1) ∼=Mη .
Which is to say, M̂η is a U(1)−bundle overMη, let’s denote the 1st Chern class of this
bundle by ω ∈ H2(Mη,Z).

Let d = dimMη and S(M) the affine space of Spinc structures on M , then by
theorem 4.11, there is a well-defined numerical invariant:

Definition 4.5 (Seiberg-Witten Invariant). The Seiberg-Witten invariant sw of M is a
function sw : S(M) −→ Z, defined by

sw(σ) :=


∫
Mη

ω
d
2 if d is even

0 if d is odd

Part III: Applications

5 Spin Geometry on Complex Manifolds

5.1 Spinc Structure Induced by an Almost Complex Structure

5.2 Dirac Operators on Complex Manifolds

6 Applications to Kähler Surfaces
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